What 1s ROOT?
Why do we use 1t?

Answer:
ROOT does what physicists do:

It makes plots.

l

Another function to be fit

| hist2

Nent = 10000

220
200
180
160
140
120
100
80
60
40
20

LI llllll I llllll I IIIII] | Illlll

——

lll

Mean = 6.714
RMS = 4.012

| 1 1 I 1] 1 | 1 I] 1 l

0 | l | 1 1 l]
0 2 4

8 10

1 14
Dou?ble Gaussian

sin(x)*sin(y)/(x*y)

Number of charged atoms in 'Nights in the Gardens of Spain’

Illlli | | IIIIIIi | | IIIIIIi | | IIIIIIi | | IIIIIIi | | |
10" 1 10 10° 10°
t [secs]

Can you spot the pun in this plot?

The typical analysis task that you will
be asked to do:

Take variables in an
, perform some computations,
and make

So what 1s a , what 1s an
, and how do we perform the
computations?

Anatomy of a histogram

__Sample histogram _ | Example
Nent = 10000
OO = Mean = -0.005034
RMS = 0.974

Number of events
N
(4]
o
1
: —_—
‘J—,_

)
=]
=)

l

100— e 1 Lﬂj
50| [‘l.
E LL’_“U_
0 "1__!"-"'[‘ 1 1 l 1 L i 1 1 1 1 ! 1 =
-3 0 1 2 3
Measurement
Properties of a histogram A ROOT command that might be used to define this histogram:
Name or Identifier TH1F myPlot("Example", "Sample histogram",100,-3,3)

Title (to be displayed on plot)
Number of bins
Lower bin limit
Upper bin limit

For simple histograms, the error in one bin is the square root of the

Sample histogram Example
with error bars Nent = 10000
2 Mean =-0.005034
§ 300 + RMS = 0.974
Q
30 -H#m dhat
§ 200 N’ . H +'++
150[— +++++++ I + #H
- . t
100} ;+7++ ++ e
+§+§+. H’r.
50 | . “++*++ +'++*
o bt lﬁ [S| lﬂ?’t’“ﬁg
-3 2 -1 0 1 2 3
Measurement

Don't forget the errors!

number of events in that bin.

' Too many bins |

Number of events

There's an art to histogram design...

Exampled
Nent = 20

—

llfl

o
)
|

0.6

0.4

|llll]|l1

7]

0.2}

Mean = 0.1251
RMS = 1.184

2 3
Measurement

| Too few bins | Example7
Nent = 1000
2 T : Mean =0.0015
$ 450 RMS = 0.9675
s 1=
5 400
Q
2 350
£
=
< 300
250
200[—
1501
100
50
0 [1 il 1 l 1 1 1 1 il il l 1 1 1 1 il il il l 1 1 1 1
-3 -2 -1 0 1 2 3
Measurement

I found a claim that an optimal number of bins is ~3/N, where N is
the number of entries in the histogram. I have not substantiated this
on my own.

Anatomy of an ntuple (a simple form of a ROOT Tree)

Branches -->

Row | event | ebeam pXx py pz
. 0 0] 150.14] 14.33 -4.02| 143.54
= 1 1| 149.79 0.05 -1.37] 148.60
& 2 2| 150.16 4.01 3.89| 145.69
v 3 3] 150.14 1.46 4.66| 146.71
4 4] 149.94] -10.34] 11.07] 148.33
5 5] 150.18] 17.08] -12.14] 143.10
6 6| 150.02 5.19 7.79] 148.59
7 7| 150.05 7.55 -7.43| 144.45
8 8| 150.07 0.23 -0.02| 147.78
9 9] 149.96 1.21 7.27] 146.99
10 10| 149.92 5.35 3.98] 140.70
11 11] 149.88 -4.63 -0.08] 147.91

An ntuple is an ordered list of numbers.
A ROOT Tree can be an ordered list of any collections of C++ objects.
Probably you'll only be asked to work with ntuples this summer, but in the

Expert section of the tutorial you can see what it’s like to work with a ROOT
Tree.

Why ROOT?
It knows about and

and 4-vectors and object persistency and schema evolution
and detector geometry and Feynmann diagrams
and linear algebra and function-fitting and multi-variable analysis and...

It can handle large volumes of data

millions of physics events; files of gigabytes->terabytes in size; complex
file structures; multi-threaded and batch processing

Multi-platform (Windows, Mac, many UNIX flavors)
It’s free.

But...

ROOT is open-source, with a complicated design history.
User-interface issues and documentation are often neglected.
It’s not a pre-packaged “app.” ROOT is not easy to install.
“ROOT is not your friend.”

ROOT is pretty much only used in high-energy physics.

You have to know some C++ in order to use ROOT effectively,
in order to perform

What does C++ look like? Well...

#define AnalyzeHistogram cxx

#include "AnalyzeHistogram.h"
#include <TH2.h>
#include <TStyle.h>

//***x%x%xx Definition section ****x*xx*%
TH1* chi2Hist = 0;

void AnalyzeHistogram: :Begin(TTree * /*tree*/)
{
TString option = GetOption();

//*x*x%xx%x%x Initialization section #****x*xx%%

chi2Hist = new TH1F("chi2","Histogram of Chi2",100,0,20);
chi2Hist->GetXaxis()->SetTitle("chi2");
chi2Hist->GetYaxis()->SetTitle("number of events");

}

void AnalyzeHistogram::SlaveBegin(TTree * /*tree*/)

{
TString option = GetOption();
}

Bool t AnalyzeHistogram::Process(Long64_t entry)

{
YVAREE XS T L] Loop section **xxk*k%kx
treel->GetEntry(entry);
chi2Hist->Fill(chi2);

return kTRUE;
}

void AnalyzeHistogram::SlaveTerminate()

{}

void AnalyzeHistogram::Terminate()

{
YA EE XS T L] Wrap-up section ***xxk*kkkx
chi2Hist->Draw();

}

If you prefer Python, there’s pyroot

import ROOT

Open the file.
myfile = ROOT.TFile('experiment.root')

Retrieve the n-tuple of interest.
mychain = ROOT.gDirectory.Get('treel')
entries = mychain.GetEntriesFast ()

Create a 2D histogram

myHist = ROOT.TH2D("hist2D","chi2 vs ebeam",100,0,20,100,149,151)
myHist.GetXaxis () .SetTitle ("chi2")
myHist.GetYaxis () .SetTitle ("ebeam [GeV]")

for jentry in xrange(entries):

Copy next entry into memory and verify.
nb = mychain.GetEntry(jentry)
if nb <= 0:

continue

Fetch the variables from the entry and fill the histogram.
chi2 = mychain.chi?2

ebeam = mychain.ebeam

myHist.Fill (chi2, ebeam)

Display the scatterplot.
myHist.Draw ()

Web Links

All the documents you've seen (and will see) during these
tutorial sessions can be found here (this is the only link
you need to write down from this lecture):

https://www.nevis.columbia.edu/~seligman/root-class/

ROOT and C++ links, including links to reference books
on C++ and statistics, can be found at:

http://www.nevis.columbia.edu/~seligman/root-class/links.html

https://www.nevis.columbia.edu/~seligman/root-class/
http://www.nevis.columbia.edu/~seligman/root-class/links.html

The Hands-on Course
Basic Data Analysis using ROOT

ROOT basics

Over the next 2-3 days, you will learn how to:

* look up ROOT command references

* plot a function

* histogram a variable

* fit a histogram

* get a variable from an n-tuple

 apply cuts

* do a quick study using TreeViewer (optional)
* create C++ or python code for an n-tuple

* use the Jupyter notebook server for quick coding
-- but not necessarily in this order!

Wait... there’s more!

The written tutorial includes intermediate topics, advanced topics, and
an appendix. They’re there if you have the time during the tutorial
sessions, or for reference later on as you work with ROOT.

Intermediate topics include:

* Advanced histogram techniques
* JupyterLab

* Dataframes

Advanced ROOT, and becoming a ROOT expert:
* Creating an x-y plot

* Working with large numbers of histograms

* Extracting your own ntuples

The appendix includes:
Statistics jargon that physicists use
Programming tips
Batch systems

A Brief ROOT Demonstration

o Using the command line
« Using the notebook server

