Basic Data Analysis Using ROOT

A guide to this tutorial

If you see acommand in thistutorial is preceded by "[]", it meansthat it isa ROOT
command. Y ou should type that command into the ROOT program as appropriate,
without the "[]" symbols. For example, if you see

[] .x treeviewer.C
it meansto type ".x treeviewer.C" at aROOT command prompt.

If you see acommand in thistutoria is preceded by ">", it meansthat it isa UNIX
command. Y ou should type that command into UNIX, not into ROOT, and without the
">" symbol. For example, if you see

> man | ess

it means to type "man less" at a UNIX command prompt.

Most of the lessons have time estimates at the top. These are only rough estimates;
some students take 20 minutes to go through a lesson labeled "15 minutes”, others take
only 5. Don't be too concerned about time; the important thing is for you to learn
something, not to punch a time clock.

You can find this tutorial in Postscript and PDF format (along with links to the sample
files) at <http://www.nevis.columbia.edu/~seligman/root-class/>. You can find additional
ROOT tutorials at <http://root.cern.ch/root/Publications.html>.

Getting started on Linux

If you're sitting in front of an X-terminal or a computer running Linux, just use your
account name and password to login. After you log in, if your screen isjust showing text
(without any graphics at al), then type "startx" to run X-windows.

Click once on the Netscape icon at the bottom of the screen to start Netscape. (Some
Linux distributions don't put a Netscape icon on the default panel at the bottom. For now,
just click on the icon that looks like the planet earth inside a gear and use Konqueror as
your web browser.)

Type the following URL in the "Location" field of the web browser: http://root.cern.ch/.
Thisisthe ROOT web site. You'll be coming back here often, so be sure to bookmark this
site.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 1 of 33

Getting Started on Windows 2000

Normally you'll run ROOT on aLinux system running X-windows. However, in room
118 we're using Windows machines. In order to access a Linux system, you'll have to do
the following:

1. Log on to Windows.

Hit Ctrl-Alt-Del on the Windows 2000 login screen. The account nameis "reu", the
password is "kubrick". Select "AUTH_SERVER" from the pop-up menu at the bottom
of the dialog box.

2. Start Exceed (an X-windows emulator) in passive mode.

Wait until Windows has finished starting up. Double-click on the "Exceed" icon on the
Windows desktop. The only thing that should happen is that an "Exceed" box should
appear on the Taskbar at the bottom of the screen. If you see anything else happen, call
Bill Seligman over to re-configure Exceed to Passive mode for you.

3. Start Secure-CRT (aterminal communications program).

Double-click on the "SecureCRT" icon.
4. Logon to the Linux system assigned to your group.

You'll see adialog box. Under "Hostname", type in the name of the server assigned to
your working group (for ATLAS or eBubbleit's "kolya'; for DO it's "karthur"; for
Muon it's "hogwarts"; for Neutrino it's "ladym™). Type your account name next to
"Username”, hit "Connect", type your password, and hit "OK". Do not check the box
next to "Remember My Password"! If you see adialog box entitled "New Host Key",
just click "Accept & Save'.

Y ou should next start Netscape. Please: Always start Netscape on the system you're on;
never run it on a remote system. Therefore, start Netscape by double-clicking the
Netscape icon on the Windows desktop; move the SecureCRT window if necessary. Fill
out the profileinformation if it asks for it. If Netscape doesn't work, use Internet
Explorer.

Once Netscape is running, type the URL http://root.cern.ch/ in the Location field.
Bookmark this site. Y ou will be returning to it often during this class.

Click on the SecureCRT window to make it active. You'll aso be doing thisalot during
this class; many of the graphics operations will "deselect” the main window.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 2 of 33

A Brief Intro to Linux
If you're already reasonably familiar with Linux or UNIX in general, skip this section.

You can spend a lifetime learning Linux; I've been working with UNIX since 1993 and I'm
still learning something new every day. The commands below barely scratch the surface.
You may to look at UNIXhelp <http://www.geek-girl.com/Unixhelp/>, UNIX is a Four-Letter
Word <http://www.msoe.edu/~taylor/4ltrwrd/>, and the usually out-of-date information |
maintain at <http://www.nevis.columbia.edu/software/>.

To copy afile: usethe"cp" command.

For example, to copy the file "example.C" from the directory "~seligman/root-class" to
your current working directory, type:

> cp ~seligman/root-cl ass/exanpl e. C $cwd

In UNIX, the variable $cwd means your "current working directory". (I know that a period
(.) is the more usual abbreviation, but many students kept missing the period the first time
| taught this class.)

To look at the contents of a text file: Use the less command.

This command is handy if you want to quickly look at a file without editing it. If the name of
the command seems puzzling, it may help to know the more command also displays the
contents of a text file, and the less command was created as more powerful version of
more. So to quickly look at the contents of file example.C, type:

> | ess exanple.C

While less is running, type a space to go forward one screen, type "b" to go backward
one screen, type "q" to quit, and type "h" for a complete list of commands you can use.

To get help on any UNIX command: type "man <command-name>".

While man is running, you can use the same navigation commands as less. For
example, to learn about the Is command, type:

> man |'s

To edit afile: use the emacs command. (If you're already familiar with another editor,
such as pico or vi, you can use it instead.)

You will almost aways want to add an ampersand (&) to the end of any "emacs"
command; the ampersand means to run the command as a separate process. So to edit
the file example.C, type:

> enmacs exanple.C &

The "emacs" environment is complex, and you can spend a lifetime learning it. (Already
I've spent two of your lifetimes, and the class has just started!) You can get around by
using the mouse to move the cursor and look at the menus. As soon as you can (probably
not during this class), you should take the Emacs tutorial by selecting it under the "Help"
menu.

Try to learn how to cut and paste in whatever editor you use. If you don't, you'll waste a lot
of time today typing the same things over and over again.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 3 of 33

Starting ROOT (5 minutes)
Before you start using ROOT, you have to type the following command:

> setup root

The command setup root sets some Unix environment variables and modifies your
command and library paths. If you feel a need to remove these changes, use the
command unsetup root.

One of the variables that is set is $ROOTSYS. This will be helpful to you if you're following
one of the examples in the ROOT Users Guide. For example, if you're told to find a file in
$ROOTSYS/tutorials, you'll be able to do this only after you've typed "setup root".

You have to execute the setup root command only once, but you must do it each time
you login to Linux. If you wish this command to be automatically executed when you login,
you can add it to the .mycshrc file in your home directory.

Y ou are going to need to have at least two windows open during this class. One window
I'll call your "ROOT command" window; thisis where you'll run ROOT. The other isa
separate "UNIX command” window. Create a second window with the following
command; don't forget the ampersand (&):

> xterm &

It doesn't matter which of these two windows is your ROOT window or your UNIX
command window.

To actualy run ROOT, just type:

> root
The window in which you type this command will become your ROOT command window.

First you'll see the orange-and-red ROOT window appear on your screen. It will then
disappear, and a brief "Welcome to ROOT" display will be written on your command
window.

If you don't see the orange-and-red ROOT window appear briefly on your screen, it
means that X-windows is not functioning properly on your system; tell Bill Seligman.
However, this is unlikely, since the "xterm" command would have failed if X-windows were
not working.

Click on the ROOT window to select it, if necessary.

You can type"?" (or ".h") to see alist of ROOT commands... but you'll probably get more
information than you can use right now. Try it and see.

The most important ROOT line command you need to know is how to quit ROOT. To
exit ROOT, type".q". Do this now, then start ROOT again, just to make sure you can do
it.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 4 of 33

Plotting a function (15 minutes)

This example is based on the first example in Chapter 2 of the ROOT Users Guide (page
15). | emphasize different aspects of ROOT than the Users Guide, and it's a good idea to
go over both the example in the Guide and the one below.

Let's plot asimple function. Start ROOT and type the following at the prompt:
[] TF1L f1("funcl","sin(x)/x",0,10)
[] f1.Draw()

Note the use of C++ syntax to invoke ROOT commands; page 16 of the ROOT Users
Guide has a discussion of this.

If you have a keen memory (or you type ".h" on the ROOT command line), you'll notice
that neither TF1 nor any of its methods are listed as commands, nor will you find a
detailed description of TF1 in the Users Guide. The only place that the complete ROOT
functionality is documented is on the ROOT web site.

Go to the ROOT web site at <http://root.cern.ch/> (did you remember to bookmark this
site?), click on "Reference Guide", then on "The ROOT Class Categories’, then on
"Histogram", and finally on "TF1". Scroll down the page; you'll see the class methods,
then a class description.

Get to know your way around this web site. You'll be coming back often.

Also note that when you executed "f1.Draw()", ROOT created a canvas for you named
"c1". "Canvas" is ROOT's term for a window that contains ROOT graphics; everything
ROOT draws must be inside a canvas.

Bring the window named "c1" to the front by left-clicking on it. As you move the mouse
over different parts of the drawing (the function, the axes, the graph label, the plot edges)
note how the shape of the mouse changes. Right-click the mouse on different parts of the
graph and see how the pop-up menu changes.

Position the mouse over the function itself (it will turn into a pointing finger). Right-click
the mouse and select "SetRange”. Set the range to xmin=-10, xmax=10, and click "OK".
Observe how the graph changes.

Let's start getting into a good habit by labeling our axes. Right-click on the x-axis of the
plot, select "SetTitle", enter "X [radians]”, and click "OK". Let's center that title: right-
click on the x-axis again, select "CenterTitle", and click "OK".

Note that clicking on the title gives you a "TCanvas" pop-up, not a text pop-up; it's as if the
titte wasn't there. Only if you right-click on the axis can you affect the title. In object-
oriented terms, the title and its centering are a property of the axis.

It's a good practice to always label the axes of your plots. Don't forget to include the units.

Do the same thing with the y-axis; call it "sin(x)/x". Select the "RotateTitle" property of
the y-axis and see what happens.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 5 of 33

Plotting a function (continued) (15 minutes)

Move the cursor over the function itself, right-click, and select "DrawPanel”. Click on
"hist", then on "Draw". Now try clicking on "legol", then on "Draw". Try the other lego-
plot options. If you click on "Polar”, you may not see much... but then try selecting
"surface" aswell.

If you "ruin” your plot, you can always quit ROOT and start it again. We're not going to
work with this plot in the future anyway.

Exercise 1
Try to duplicate the following plot:

| sin()*sin(y)/(x*y) |

]-_:
0.8
0.6
'

S —_—
0': ------- t'{:“‘:“mi&"‘aii!“‘?\“é
T L\

10 .

Hints: Look at the TF1 command on the last page. If class TF1 will generate a one-
dimensional function, what class might generate a two-dimensional function? If TF1 takes
a function name, formula, and x-limits in its constructor, what arguments might a two-
dimensional function class use? What option on the DrawPanel might produce a smooth
surface? Don't forget that the ROOT web site is available as a resource.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 6 of 33

Working with Histograms (15 minutes)

Histograms are described in Chapter 3 of the ROOT Users Guide. You may want to look
over this chapter later to get an idea of what else can be done with histograms other than
what | cover in this class.

Let's create a simple histogram:

[] THLF h1("hist1","H stogram from a gaussi an", 100, - 3, 3)

Let's look at what these arguments mean for a moment (and you should also look at the
description of TH1F on the ROOT web site). The name of the histogram is "hist1". The
title displayed when plotting the histogram is "Histogram from a gaussian”. There are 100
bins in the histogram. The limits of the histogram are from -3 to 3.

Question: What should be the width of one bin of this histogram? Type the following to
see if your answer is the same as ROOT thinks it is:

[1 hl.GetBi nW dth(0)

Note that we have to indicate which bin's width we want (bin O in this case), because you
can define histograms with varying bin widths.

If you type
[1 h1.Draw()

right now, you won't see much. That's because the histogram is empty. Let's randomly
generate 10,000 values according to adistribution and fill the histogram with them:

[1 hl.FillRandon("gaus", 10000)

[1 hl.Draw()

The "gaus" function is pre-defined by ROOT (see the TFormula class on the ROOT web
site; there's also more on the next page of this tutorial). The default Gaussian distribution
has a width of 1 and a mean of zero.

Note the histogram statistics in the top right-hand corner of the plot. Question (for those
who've had statistics): Why isn't the mean exactly 0, or the width exactly 1?

Add another 10,000 events to histogram hl with the FillRandom method (hit the up-
arrows until you see "h1.FillRandom("gaus’,10000)" again, and hit return). Click on the
canvas. Note how the histogram updates immediately, without another "Draw" command.

Move the mouse over the line of the histogram; note that it changes into an arrow instead
of a pointing finger. Right-click on the histogram and select "DrawPanel”. Click on "E1:
error/edges’, then on "Draw".

The size of the error bars is equal to the square root of the number of events in that
histogram bin. With the up-arrow key in the ROOT command window, execute the
FillRandom method a few more times and click on the histogram again. Question: Why do
the error bars get smaller?

You will often want to draw histograms with error bars. For future reference, you could
have used the following command instead of the DrawPanel:

[] hi.Draw("el")

Jun 7, 2002 Basic Data Analysis Using ROOT Page 7 of 33

Working with Histograms (continued) (10 minutes)
Let's create a function of our own:

[l TFL nyfunc("nyfunc", "gaus", 0, 3)
The"gaus" (or gaussian) function is actually

os(222)’

P.e

where P,, P;, and P, are "parameters’ of the function.” Let's set these three parameters to
values that we choose, draw the result, then create a new histogram from our function:

[nyfunc. Set Paraneters(10.,1.0,0.5)
[] nmyfunc. Draw()
[] THLF h2("hist2","H stogram from ny function", 100, - 3, 3)
[1] h2.FillRandom(" nmyfunc", 10000)
[] h2.Draw()
Note that we could also set the function's parameters individually:
[] nyfunc. Set Paraneter(1,-1.0)
[1 h2.Fill Randon(" nyfunc", 10000)

What is the difference between the command 'SetParameters' and 'SetParameter'? If you
have any doubts, check the description of class TF1 on the ROOT web site.

* Optional note for advanced users:

In ROOT's TFormula notation, this would be "[0]* exp(-0.5* (x-[1])/[2])*2)"; "[n]"
corresponds to P,. | mention this so that when you become more experienced with
defining your own parameterized functions, you can use adifferent formula:

[] TF1 nyGaus("user",
"[0]*exp(-.5*((x-[1])/[2])"2)/([2] *sqrt(2.*pi))")

This may seem cryptic to you now. Actualy, it's just a gaussian distribution with a
different normalization so that P, divided by the bin width becomes the number of events
in the histogram:

[] nmyGaus. Set Paraneters(10.,0.,1.)
[] hist.Fit("user")

[] Doubl e t nunber Equi val ent Events =
myGaus. Get Paraneter (0) / hist. GetBi nWdth(0)

Jun 7, 2002 Basic Data Analysis Using ROOT Page 8 of 33

Working with muliple plots (optional) (5 minutes)
If you're running short on time, you can skip this page (or any of the other optional pages).

We have alot of different histograms and functions now, but we're plotting them all on
the same canvas, so we can't see more than one at atime. There are two ways to get
around this.

First, we can create a new canvas by selecting "New Canvas' from the File menu of our
existing canvas, thiswill create a new canvas with aname like "cl_n2". Try this now.

Second, we can divide a canvasinto "pads’. On the new canvas, right-click in the middie
and select "Divide". Enter nx=2, ny=3, and click "OK".

Click on the different pads and canvases with the middle button. Observe how the yellow
highlight moves from box to box. The "target" of the Draw() method will be the
highlighted box. Try it: select one pad with the middle button, then enter

[1] h2.Draw()
Select another pad or canvas with the middle button, and type:

[] nmyfunc. Draw()

At this point you may wish that you had a bigger monitor!

Jun 7, 2002 Basic Data Analysis Using ROOT Page 9 of 33

Saving and printing your work (15 minutes)

By now you've probably noticed the "Save As' options under the "File" menu on the
canvas. What do all these options mean?

- "Saveascanvas.ps’ will create a Postscript file named <canvas-name>.ps; for
example, if you use this option from canvas c1, it will create "c1.ps'. Theimage it
creates will be sized to fit an entire page.

- "Saveascanvas.eps’ will create an Encapsulated Postscript file. Thisfileis suitable
for embedding into larger documents such as those created by LaTex, StarOffice, and
MS-Word. Note that ROOT does not create an image preview; the Linux command
"ps2epsi” can do thisfor you.

- "Saveascanvas.gif” will create a GIF image, suitable for embedding into web pages.

- "Saveascanvas.C" will create afile with the ROOT commands necessary to re-create
this canvas; more on this below.

- "Save as canvas.root" will create a native ROOT file with all the objects necessary to
re-create this canvas; more on this below.

Select "Save as canvas.C" from one of the canvasesin your ROOT session (the more
complex the better). Let's assume for the moment that the file "c1.C" is created. In your
UNIX window, type

> |less cl.C

As you can see, this can be an interesting way to learn more ROOT commands.
However, it doesn't record the procedure you went through to create your plots, only the
minimal commands necessary to display them.

Next, select "Save as canvas.ps' from the same canvas; well print it later.

Finally, select "Save as canvas.root” from the same canvas. Let's assume the file is named
"cl.root". Now quit ROOT with the ".g" command, and start it again.

To re-create your canvas from the ".C" file, use the command
[] .x cl.C

This is your first experience with a ROOT "macro”, a stored sequence of ROOT
commands that you can execute at a later time. One advantage of the ".C" method is that
you can edit the macro file, or cut-and-paste useful command sequences into macro files
of your own.

Quit ROOT and print out your Postscript file with the command
> gpr -Pqnmsl cl. ps

This may be point at which you'll notice that the default background color for ROOT plots
is not pure white. You can change the background by right-clicking on a canvas and
selecting "SetFillAttributes”; you'll have to do this in the regions both outside and inside
the plot.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 10 of 33

The ROOT browser (5 minutes)

The ROOT browser is a useful tool, and you may find yourself creating one at every
ROOT session. Read pages 24-25 of the ROOT Users Guide to find out how to make
ROOT start a new browser automatically each time you start ROOT.

One way to retrieve the contents of file "cl.root" isto use the ROOT browser. Start up
ROQOT and create a browser with the command:

[] TBrowser tb

In the right-hand pane, double-click on the folder with the same name as your home
directory. Scroll through the list of files. You'll notice special icons for any files that end
in".C" or ".root". If you double-click on afilethat endsin".C", ROOT will assume the
file contains a ROOT macro and interpret the contents. Try thison "c1.C", then close the
canvas window.

Now double-click on "cl.root". Nothing will appear to change. Now click on the "ROOT
Files' folder in the left-hand pane; thisisthe list of files currently opened by ROOT.
Double-click on "cl.root" in the right-hand pane, then double-click on "c1;1".

What does "c1;1" mean? You're allowed to write more than one object with the same
name to a ROOT file (this topic is part of an optional lesson later in this tutorial). The first
object has ";1" put after its name, the second ";2", and so on. You can use this facility to
keep many versions of a histogram in a file, and be able to refer back to any previous
version.

At this point, saving a canvas as a ".C" file or as a ".root" file may look the same to you.
But these files can do more than save and re-create canvases. In general, a ".C" file will
contain ROOT commands and functions that you'll write yourself; “.root" files will contain
complex objects such as n-tuples.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 11 of 33

Fitting a histogram (15 minutes)

| created afile with acouple of histogramsin it for you to play with. Switch to your
UNIX window and copy thisfile into your directory:

> cp ~seligman/root-cl ass/ hi stogramroot $cwd

Go back to your browser window. (If you've quit ROOT, just start it again and start a new
browser.) Click on the folder in the left-hand pane with the same name as your home
directory. If you don't see "histogram.root”, select "Refresh” from the "View" menu.

Double-click on "histogram.root”, click on "ROOT Files' in the |eft-hand pane, then
double-click on "histogram.root" in the right-hand pane. Y ou can see that I've created two
histograms with the names "hist1" and "hist2". Double-click on "hist1".

You can guess from the x-axis label that | created this histogram from a gaussian
distribution, but what were the parameters? In physics, to answer this question we
typically perform a "fit" on the histogram: you assume a functional form that depends on
one or more parameters, and then try to find the value of those parameters that make the
function best fit the histogram.

Right-click on the histogram and select "FitPanel". Click on "gaus', then click on "Fit".
You'll seetwo changes: A function is drawn on top of the histogram, and the fit results
are printed on the ROOT command window.

Interpreting fit results takes a bit of practice. Recall that a gaussian has 3 parameters (P,
P1, and P,); these are labeled "Constant”, "Mean", and "Sigma" on the fit output. ROOT
determined that the best value for the "Mean" was 5.96+0.03, and the best value for the
"Sigma" was 2.47+0.02. Compare this with the Mean and RMS printed in the box on the
upper right-hand corner of the histogram. Statistics questions: Why are these values
almost the same as the results from the fit? Why aren't they identical?

On the canvas, select "Show Fit Parameters' from the "Options' menu. Click on "Fit" on
the FitPanel again. Just as a check, click on "landau" on the FitPanel and click on "Fit"
again; then click on "expo" and fit again.
It looks like of the three choices (gaussian, landau, exponential), the gaussian is the best
functional form for this histogram. Take a look at the "Chi2 / ndf" value in the statistics box
on the histogram ("Chi2 / ndf" is pronounced "kie-squared per degrees of freedom"). Do

the fits again, and observe how this number changes. Typically, you know you have a
good fit if this ratio is about 1.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 12 of 33

Fitting a histogram (continued) (15 minutes)

Go back to the browser window and double-click on "hist2". Uh-oh; this doesn't look like
agaussian. Right-click on the histogram and select "FitPanel" (be careful not to re-use the
FitPanel from "hist1"). Click on "gaus" and then on "Fit". Uggh -- that's aterriblefit! You
can try the landau and exponential functions, but they won't work much better.

You've probably already guessed by reading the x-axis label that | created this histogram
from the sum of two gaussian distributions. But you've probably also noticed a button on
the FitPanel labeled "user"; this is for fitting to a user-defined function.

In order to use this button, you have to define a function that has the name "user".
Define a user function with the following command:
[] TF1 func("user", "gaus(0)+gaus(3)")

Note that the internal ROOT name of the function has to be "user"”, but not the function
object itself.

What does "gaus(0)+gaus(3)" mean? You already know that the "gaus" function uses
three parameters. "gaus(0)" means to use the gaussian distribution starting with
parameter 0; "gaus(3)" means to use the gaussian distribution starting with parameter 3.
This means our user function has six parameters: Po, P1, and P; are the "constant",
"mean”, and "sigma" of the first gaussian, and Ps, P4, and Ps are the "constant"”, "mean",
and "sigma" of the second gaussian.

Now try to do afit by going to the FitPanel, clicking on "user”, then clicking on "Fit".

If you look at the ROOT command window, you'll see that all six parameters have the
value "nan", which means "Not A Number." For all but the simplest fits, ROOT needs to
have some starting values for its fit parameters.

Let's set the values of Po, Pl, Pz, P3, P4, and P5:
[] func. SetParaneters(5.,5.,1.,1.,10.,1.)
Then click on "Fit" on the FitPandl.

The results are not much better. This is because | deliberately picked a poor set of
starting values. Let's try a better set:

[] func. Set Paraneters(5.,2.,1.,1.,10.,1.)
These starting values don't look much different, but try to fit the histogram again.

These simple fit examples may leave you with the impression that all histograms in
physics are fit with gaussian distributions. Nothing could be further from the truth. I'm
using gaussians in this class because they have properties (mean and width) that you can
determine by eye.

Chapter 5 of the ROOT Users Guide has a lot more information on fitting histograms, and
a much more realistic example.

If you want to see how | created the file histogram.root, go to the UNIX window and type:

> | ess ~seligman/root-class/CreateHi st.C

Jun 7, 2002 Basic Data Analysis Using ROOT Page 13 of 33

Saving your work, part 2 (optional) (15 minutes)

So now you've got a histogram fitted to a complicated function. Try "Save as canvas.C"
from the "File" menu, and examine the result in your UNIX window with

> |ess cl.C

| know it looks like a bunch of C++ commands. But if you look carefully, you'll see that
the user function you just created is not re-created in the macro.

If you were to use "Save as canvas.root”, quit ROOT, restart it, then load canvas "c1;1"
from the file, you'd get your histogram back with the function superimposed... but it's not
obvious where the function is or how to access it now.

What if you want to save your work in the same file as the histograms you just read in?
You can do it, but not by using the ROOT browser. The browser will only open files in
read-only mode. To be able to modify a file, you have to open it with ROOT commands.

Try the following: Quit ROOT (note that you can select "Quit ROOT" from the "Fil€e"
menu of the canvas or the browser). Start ROOT again, then modify "histogram.root™
with the following commands:

[] TRile filel("histogramroot","UPDATE")
It is the "UPDATE" option that will allow you to write new objects to "histogram.root".

[1 hist2.Draw()

For the following two commands, try hitting the up-arrow key until you see them again.
ROOT stores the last 80 or so ROOT commands you've typed in the file ".root-hist" in
your home directory, and let's you re-use them with the arrow keys.

[] TF1 func("user", "gaus(0)+gaus(3)")
[] func. SetParaneters(5.,2.,1.,1.,10.,1.)
The following command is the same as clicking on "user" and "Fit" on the FitPanel:

[] hist2.Fit("user")

Now you can do what you couldn't before: save objects into the ROOT file:
[] hist2. Wite()
[] func.Wite()

You should close the file to make sure you save your changes:

[] filel.d ose()

Quit ROQT, start it again, and use the ROOT browser to open "histogram.root”. Y ou'll
see a couple of new objects: "hist2;2" and "user;1". Double-click on each of them to see
what you've saved.

Chapter 11 of the ROOT Users Guide has more information on using ROOT files.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 14 of 33

Dealing with PAW files (optional) (5 minutes)

Suppose someone gives you a file that contains n-tuples or histograms that were created
with PAW, HBOOK, or CERNLIB (actually, to first order these are three different names
for the same thing). How do you read these files using ROOT?

The answer is that you can't, at least not directly. You must convert these files into ROOT
format using the command "h2root".

For example, if someone gives you afile called "testbeam.hbook™, you can convert it with
the command

> h2root testbeam hbook

This creates a file "testbeam.root" that you can open in the ROOT browser.

There is no simple way of converting a ROOT file back into PAW/HBOOK/CERNLIB
format. You generally have to write a custom program with both FORTRAN and C++
subroutines to accomplish this task.

Note that the "h2root" command is set up (along with ROOT) with the command

> setup root

that you type when you log in. If you accidentally type "h2root" (or "root") before you set up
ROOT, you'll get the error message:

h2root: Command not found

Y ou can get more information about "h2root” by using a special form of the "man”
command:

> man $ROOTSYS/ man/ h2r oot . 1
There's also information on pages 26-27 of the ROOT Users Guide.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 15 of 33

Accessing variables in ROOT NTuples/Trees (10 minutes)
I've created a sample ROOT n-tuple in ~seligman/root-class/experiment.root.
Start fresh by quitting ROOT. Copy my 2.1 MB example Tree file with the command
> cp ~seligman/root-cl ass/experinent.root $cwd
Start ROOT again. Start a new browser with the command
[] TBrowser b

Click on the folder in the left-hand pane with the same name as your home directory.
Double-click on "experiment.root”, click on "ROOT Files" in the left-hand pane, then
double-click on "experiment.root” in the right-hand pane. There's just one object inside:
"treel", aROOT Tree (or n-tuple) with 100,000 simulated physics events.

Actually, there's little or no real physics associated with the contents of this tree. | created
it solely to illustrate ROOT concepts, not to demonstrate real physics with a real detector.

Right-click on the "treel" icon, and select "Scan". Y ou'll be presented with a dialog box;
just hit "OK" for now. Select your ROOT window, even though the dialog box didn't go
away. At first you'll probably just notice that it's alot of numbers. Take alook at near the
top of the screen; you should see the names of the variablesin this ROOT Tree.

In this overly-simple example, an imaginary particle is travelling in a positive direction
along the z-axis with energy "ebeam". It hits a target at z=0, and travels a distance "zv"
before it is deflected by the material of the target. The particle's new trajectory is
represented by "px", "py", and "pz", the final momenta in the x-, y-, and z-directions
respectively. The variable "chi2" represents a confidence level in the measurement of the
particle's momentum.

Did you notice what's missing from the above description? One important omission is the
units; for example, | didn't tell you whether "zv" is in millimeters, centimeters, inches,
yards, etc. Such information is not usually stored inside an n-tuple; you have to find out
what it is and include the units in the labels of the plots you create. For this example,
assume that "zv" is in centimeters (cm), and all energies and momenta are in GeV.

Y ou can hit "return” to see more numbers, but you probably won't learn much. Hit "q" to
finish the scan. You'll have to hit "return” a couple of timesto see the ROOT prompt
again.
If you right-click on "treel" icon in the browser again, you'll see that one of the options is
"StartViewer". If you select this option, you see the TreeViewer, a graphical way to

analyze ROOT trees. In last year's class, | spent a lot of time teaching the students how to
use the TreeViewer.

But this time turned out to be wasted. If you want to do anything serious, you have to use
ROOT macros. You can explore the TreeViewer on your own if you wish, but I'm not
going to mention it again (at least this year!).

Jun 7, 2002 Basic Data Analysis Using ROOT Page 16 of 33

Simple analysis using the Draw command (10 minutes)

The title of this section is almost the same as a corresponding section in the ROOT Users
Guide, beginning on page 258. I'm just going to bring up a few basic tricks before going
into the topic of using C++.

If may be that using the Draw command (and the other techniques discussed in the
ROOT Users Guide) will allow you to perform all the analysis tasks that your supervisor
will ask you to do. However, it's more likely that these simple commands will only be
useful when you get started; for example, you can draw a histogram of just one variable to
see what the histogram limits might be in C++.

If you don't already have the sample ROOT Tree file open, open it with the following
command:

[] TFile nyFile("experinment.root")

Y ou can use the Scan command to look at the contents of the Tree, instead of using the
TBrowser as described on the previous page:

[] treel->Scan()

If you take a moment to think about it (a habit | strongly encourage), you may ask how
ROOT knows that there's a variable named "treel1", when you didn't type in a command to
create it.

The answer is that when you read a file containing ROOT objects (see "Saving your work,
part 2" above) in an interactive ROOT session, ROOT automatically looks at the objects
in the file and creates variables with the same name as the objects.

This is not standard behavior in C++; it isn't even standard behavior when you're working
with ROOT macros. Don't become too used to it!

Y ou can aso display the Treein adifferent way that doesn't show the data, but displays
the names of the variables and the size of the Tree:

[] treel->Print()
Either way, you can see that the variables stored in the Tree are "event”, "ebeam”, "px",
"py", "pz", "zv", and "chi2".
Create a histogram of one of the variables. For example:
[] treel->Draw"ebeant)
Using the Draw command, make histograms of the other variables.

By the way, the variable "event" is just the event number (it's O for the first event, 1 for the
second event, 2 for the third event... 99999 for the 100,000th event).

Jun 7, 2002 Basic Data Analysis Using ROOT Page 17 of 33

Pointers: An all-too-brief explanation (optional, for those who
don't know C++ or C) (5 minutes)

Notice that on the previous page we used the pointer symbols "->" (a dash followed by a

greater-than sign) instead of the period "." to issue the commands to the Tree. This is
because the variable "treel" isn't really the Tree itself; it's a 'pointer’ to the Tree.

The difference between an object and a pointer in C++ (and ROOT) is a key concept in
programming. Unfortunately, a detailed explanation is beyond the scope of this tutorial,
although | may try to say something about this in class. | strongly suggest that you look up
the description of pointers that you can find in every introductory text on C++ or C.

For now, | hope it's enough to just show a couple of examples:
[] THLF hist1("h1","a histogrant, 100, -3, 3)

This creates a new histogram in ROOT, and the name of the 'histogram object' is "hist1". |
must use a period to issue commands to the histogram:

[1 histl. Draw()

Here's the same thing, but using a pointer instead:
[] THLF *histl = new TH1F("h1l","a histograni, 100, - 3, 3)

Note the use of the asterisk "*" when | define the variable, and the use of the C++
keyword "new".

In this example, "hist1" is not a 'histogram object,’ it's a 'histogram pointer.' | must use the
pointer symbols to issue commands:

[1] histl->Draw()

Take another look at the file ¢c1.C that you created in a previous example. Note that
ROOT uses pointers for almost all the code it creates. On the previous page, | mentioned
that ROOT automatically creates variables when it opens files in interactive mode; these
variables are always pointers.

It's a little harder to think in terms of pointers than in terms of objects. However, you have
to use pointers if you want to take advantage of the C++ code that ROOT can generate
for you automatically.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 18 of 33

Simple analysis using the Draw command, part 2 (15 minutes)
Instead of just plotting asingle variables, let's try plotting two variables at once:
[] treel->Draw "ebeam px")

This is a scatterplot, a handy way of observing the correlations between two variables.
The Draw command interprets the variables as ("x:y") to decide which axes to use.

Be careful: it's easy to fall into the trap of thinking that each (x,y) point on a scatterplot
represents two values in your n-tuple. In fact, the scatterplot is a grid and each square in
the grid is randomly populated with a density of dots that's proportional to the number of
values in that grid.

Try making scatterplots of different pairs of variables. Do you see any correlations
between the variables?

If you just see a shapeless blob on the scatterplot, the variables are likely to be
uncorrelated; for example, plot "px" versus "py". If you see a pattern, there may be a
correlation; for example, plot "pz" versus "zv". It appears that the higher "pz" is, the lower
"zv" is, and vice versa. Perhaps the particle loses energy before it is deflected in the
target.

By the way, you can also make three-dimentional plots this way:
[] treel->Draw " px: py: pz")
After looking at these plots, you can see why it's important to always label your axes!
Let's create a"cut" (alimit on the range of a variable to be plotted):
[] treel->Draw("zv", "zv<20")
Look at the x-axis of the histogram. Compare this with:
[] treel->Draw"zv"

Note that ROOT determines an appropriate range for the x-axis of your histogram. Enjoy
this while you can; this feature is lost when you start using analysis macros.

Note that avariable in a cut does not have to be one of the variables you're plotting:
[] treel->Draw "ebeant, "zv<20")

Try this with some of the other variablesin the tree.

The symbol for logical AND in C++is"&&". Try using thisin acut, e.g.:
[] treel->Draw "ebeant, "px > 10 && zv<20")

A note for advanced users: A "cut" is actually a weight that ROOT applies when filling a
histogram; a logical expression has the value 1 if true and the value 0 if false. If you want
to fill a histogram with weighted values, use an expression for the cut that corresponds to
the weight. For example, a cut of "1/e" will fill a histogram with each event weighted by
1/e; a cut of "(1/e)*(sqrt(z)>3.2)" will fill a histogram with events weighted by 1/e, for those
events with sqrt(z) greater than 3.2.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 19 of 33

Using C++ to analyze a Tree (10 minutes)

The first step is to have ROOT write the skeleton of an analysis class for your n-tuple.
This is done with the MakeClass command.

Let's start with aclean date: quit ROOT and start it up again. Open the ROOT tree again:
[l TFile nyFile("experinment.root")

Now create an analysis macro for "treel" with MakeClass. I'm going to use the name
'‘Analyze' for this macro, but you can use any name you want; just remember to use your
name instead of 'Analyze' in al the examples below.

[] treel->Maked ass("Anal yze")

Switch to the UNIX window and examine the files that were created:
> | ess Anal yze. h
> | ess Anal yze.C

Remember this from my introductory talk? Unless you're familiar with C++, this probably
looks like gobbledy-gook to you. (I know C++, and it looks like gobbledy-gook to me.)
Fortunately, we can simplify the task by understanding the approach of most analysis
tasks:

- Set-up (open files, define variables, create histograms, etc.).

» Loop (for each event in the n-tuple or Tree, perform some tasks: calculate values,
apply cuts, fill histograms, etc.).

- Wrap-up (display results, save histograms, etc.)

The C++ code from Analyze.C is on the next page. I've marked the places in the code
where you'd place your own commands for Set-up, Loop, and Wrap-up. Compare the
code you see in Analyze.C with what I've put on the next page.

You've probably already guessed that lines beginning with "//" are comments. Comments
are not executed by the computer; they're there for the benefit of humans.

You're next observation may be that the comments put there by ROOT aren't helpful to
you. | agree; the target audience for these comments are people experienced with ROOT.
These are the comments that ROOT automatically generates with the MakeClass
command; you can edit them after they're created, but you can't easily prevent them from
being created in the first place.

Note that Loop and Wrap-up are separated by a single right curly bracket "}". Make sure
your commands go in the right place! Also, be careful not to accidentally delete the final
"} in the file when you edit your Wrap-up commands.

Finally, I'm sure you've noticed the comments | put in the code in the different font. That's
where you're going to put your own analysis code. If you wish, edit Analyze.C and put
those comments in there to act as placeholders for your code; | suggest you give the file a
different name as you edit it, such as "AnalyzeComments.C". I've already done this for
you, and you can copy this code if you wish:

> cp ~seligman/root-cl ass/ Anal yzeComments. C $cwd

Jun 7, 2002 Basic Data Analysis Using ROOT Page 20 of 33

#define Anal yze_cxx

#i ncl ude "Anal yze. h"
#i ncl ude "TH2. h"

#i nclude "TStyl e. h"

#i ncl ude "TCanvas. h"

voi d Anal yze: : Loop()

{

/1 In a Root session, you can do:

/1 Root > .L Analyze.C

/1 Root > Analyze t

/1 Root > t.GetEntry(12); // Fill t data menmbers with entry number 12
/1 Root > t. Show); /1 Show val ues of entry 12

/1 Root > t. Show 16); /'l Read and show val ues of entry 16

11l Root > t.Loop(); /1 Loop on all entries

/1

/1 This is the | oop skel eton

1/ To read only selected branches, Insert statenments |ike:

/1 METHODL1:

/1 f Chai n->Set BranchStatus("*",0); [// disable all branches

1/ f Chai n- >Set BranchSt at us(" branchnanme”, 1); // activate branchname

/1 METHOD2: replace line

/1 f Chain->GetEntry(i); // read all branches

/by b_branchname->GetEntry(i); //read only this branch
if (fChain == 0) return;

/I The Set-up code goes here.
Int_t nentries = Int_t(fChain->CGetEntries());
Int_t nbytes = 0, nb = 0;
for (Int_t jentry=0; jentry<nentries;jentry++) {
Int_t ientry = LoadTree(jentry); //in case of a TChain, ientry is the
entry nunber in the current file
nb = fChain->GetEntry(jentry); nbyt es += nb;

/1 if (Cut(ientry) < 0) continue;

/I The Loop code goes here.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 21 of 33

/I The Wrap-up code goes here.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 22 of 33

Running the Analyze macro (10 minutes)

Asit stands, the Analyze macro does nothing, but let's learn how to run it anyway. Quit
ROOT, start it again, and enter the following lines:

[l .L Anal yzeComments.C
[] Analyze a

[] a.Loop()

Have you figured out tab-completion on your own yet? If not, try this when you type the
first command above: type ".L An", then hit the tab key, then "C", then hit the tab key
again. If ROOT can figure out that you're trying to type in a file name, it will try to complete
that name as best it can when you hit the tab key.

By the way, it's not just ROOT that can do this. When you're in the UNIX window and you
have a long file name to work with, try typing the first couple of letters and hit tab.

After the last command, ROOT will pause as it reads through all the eventsin the Tree.
Since we haven't included any analysis code yet, you won't see anything else happen.

If you are unfamiliar with C++. you may be very confused at this point. What do any of the
above commands have to do with the file "experiment.root” or the Tree inside it? And
what do these commands mean?

Take another look at Analyze.h. If you scan through it, you'll see C++ commands that
explicitly refer to the name of the file, the name of the Tree, and the variables inside it.
Now go back and look at the top of AnalyzeComments.C. You'll see the line "#include
Analyze.h". This means that ROOT will include the contents of the file Analyze.h when it
loads AnalyzeComments.C.

".L AnalyzeComments.C" tells ROOT to load the computer code inside the file
AnalyzeComments.C, and to interpret the code to create a C++ class. The name of this
class will be "Analyze"; look near the top of Analyze.h, and you'll see the C++ keywords
“"class Analyze".

"Analyze a" creates an object whose name is "a" (I'll explain this on the next page).

"a.Loop()" tells ROOT to execute the Loop command of object "a". Look at
AnalyzeComments.C again. Near the beginning, you'll see the line "void Analyze::Loop".
The code in this file, and therefore the code that you'll be working with for the rest of this
class, defines the Loop command.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 23 of 33

Classes and objects: An all-too-brief explanation (optional, for
those who don't know C++) (5 minutes)

[]
[]
[]

So what is an class and what is an object? The way | usually think of it is that a class
defines an abstract view of a concept, but an object is a concrete representation of that
concept.

Here's an analogy. Suppose | define the concept of a circle. What are the properties of a
circle? Well, it has a radius, and the location of its center. Since we're talking about
computers, we might think of giving the circle some commands to obey: tell me your
circumference, tell me your area.

If I ask you where is the center of a circle, you'd have trouble answering the question
numerically. I've defined the concepts of a circle, but | haven't drawn an actual circle to
work with. To put it in C++ terms, I've created a circle class, but not a circle object.

Suppose | give you an actual circle to work with:

Now you can tell me the center of the circle in some co-ordinate system; for example, you
could take a ruler and measure the center from the edge of the page. The object has the
hard numbers that allow the commands to calculate values for the circumference, area,
and so on.

Assume that | write C++ code to define a circle class. I'm going to put this code in a file
whose name is CircleClass.C. I'm going to give the class a name: Circle. That class is
going to contain a command: Area.

These are the ROOT commands that might be used to find the area of a particular circle:
.L Grcledass.C

Crcle c

c. Area()

There's something I've avoided in the above commands: | didn't discuss how | might tell
ROOT the radius or the actual (x,y) co-ordinates of the center of the circle,; in C++ terms,
| haven't discussed passing values to the class constructor. The reason why I've skipped
over this is that it's not relevant to the Analyze example: the name of ROOT file, Tree, and
variables are specified explictly in Analyze.h.

So to do our analysis, we need a file for our C++ code. The file will define a class to
perform the analysis. We need to create a concrete object of the class, and we need to
issue that object the Loop command.

From a practical standpoint, this means that every time you edit the file
AnalyzeComments.C, you must re-load it into ROOT, you must create a brand-new
object, and you must execute the Loop command again.

Take another look at the three commands at the top of the previous page. Get used to
them. You'll be typing them (or variants of them) over and over again as you do your
analysis. Remember, the up-arrow key is your friend!

Jun 7, 2002 Basic Data Analysis Using ROOT Page 24 of 33

Making a histogram with Analyze (15 minutes)
Enough of the abstract concepts. Let's do some work.
Make a copy of the Analyze.C or AnalyzeComments.C file:
> cp Anal yzeConments. C Anal yzeH stogram C
Edit the file AnalyzeHistogram.C. In the Set-up section, put the following code:
TH1* chi 2Hi st = new THLF("chi 2", " H st ogram of Chi 2", 100, 0, 20);
In the Loop section, put thisin:
chi 2Hi st->Fi || (chi 2);
This goes in the Wrap-up section:
chi 2Hi st ->Draw() ;

Don't forget the semi-colons ";" at the ends of the lines! You can omit them in interactive
commands, but not in macros.

Save thefile, then enter the following commands in ROOT:
[] .L AnalyzeHi stograns.C
[] Analyze a

[] a.Loop()

Finally, we've made our first histogram with a C++ analysis macro. In the Set-up section,
we defined a histogram; in the loop section, we filled the histogram with values; in the
Wrap-up section, we drew the histogram.

How did | know which bin limits to use on "chi2Hist"? Before | wrote the code, drew a test
histogram with the command:

[] treel->Draw("chi2")

Hmm, the histogram's axes aren't labeled. How do | put the labels in the macro? Here's
how | figured it out: | labeled the axes on the test histogram by right-clicking on them and
selecting "SetTitle". Then | saved the canvas by selecting "Save As canvas.C" from the
File menu. Then I looked at c1.C and saw these commands in the file:

chi 2->Cet Xaxi s()->Set Title("chi2");
chi 2->Cet Yaxi s()->Set Titl e("nunber of events");

| scrolled up and saw that ROOT had used the variable "chi2" as the name of the
histogram variable. | copied the lines into AnalyzeHistogram.C, but used the name of my
histogram instead:

chi 2Hi st - >Get Xaxi s()->Set Title("chi2");
chi 2Hi st - >Get Yaxi s()->Set Ti tl e("nunber of events");

Try thisyourself: add the two lines above to the Set-up section, right after the line that
defines the histogram. Test the revised Analyze class.

The labels overlap the axis numbers. This is good enough for now, but you'll have to
figure out how to move the labels if you were ever to publish this plot. | leave that task as

Jun 7, 2002 Basic Data Analysis Using ROOT Page 25 of 33

an exercise for the student.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 26 of 33

Exercise 2 (5 minutes)

We're still plotting the chi2 histogram as a solid curve. Most of the time, your supervisor
will want to see histograms with errors. Revise the Analyze::Loop method in
AnalyzeHistogram.C to draw the histograms with error bars.

Hint: Look back at "Working with Histograms" earlier in this tutorial.

Warning: The histogram may not be immediately visible, because all the points are
squeezed into the left-hand side of the plot. We'll investigate the reason why in a
subsequent exercise.

Exercise 3 (15 minutes)

Revise AnalyzeHistogram.C to create, fill, and display an additional histogram of the
variable "ebeam" (with error bars and axis labels, of course).

First, some hints for those new to C++:

Take care! In "Using C++ to analyze a Tree", | broke up a typical physics analysis task
into three pieces: the Set-up, the Loop, and the Wrap-up; | also marked the location in the
analysis macro where you'd put these steps.

What may not be obvious is that all your commands that relate to setting things up must
go in the Set-up section, all your commands that are repeated for each event must go in
the Loop section, and so on. Don't try to create two histograms by copying the entire
Analyze::Loop program and pasting it into the file more than once; it won't work.

Now, some warnings for everyone:

Prediction: You're going to run into trouble when you get to the Wrap-up section and draw
the histograms. When you run your code, you'll probably only see one histogram plotted,
and it will be the last one you plot.

The problem is that when you issue the Draw command for a histogram, by default it's
drawn on the "current" canvas. If there is no canvas, a default one (our old friend "c1") is
created. So both histograms are being drawn to the same canvas.

You can solve the problem in one of two ways: you can create a new canvas for each
histogram, or you can create one large canvas and divide it into sub-pads (see the
optional lesson "Working with multiple plots" earlier in this tutorial). I'll let you pick which to
use, but be forewarned: working with pads is much more ambitious than creating one
canvas for each plot.

More clues: Look at ¢1.C to see an example of how a canvas is created. Look up the
TCanvas class on the ROOT web site to figure out what the commands do. To figure out
how to switch between canvases, look at TCanvas::cd() (that is, the cd() method of the
TCanvas class).

Jun 7, 2002 Basic Data Analysis Using ROOT Page 27 of 33

Exercise 4 (10 minutes)
Fit the ebeam histogram to a gaussian distribution.

OK, that part was easy, because you remembered there was a hint in "Saving your work,
part 2" earlier in this tutorial. It was particularly easy because the "gaus" function is built
into ROOT, so you don't have to worry about a user-defined function.

Let'smakeit abit harder: the parameters from thefit are displayed in the ROOT text
window; your task isto put them on the histogram as well. Y ou want to see the parameter
names, the values of the parameters, the errors on the parameters as part of the plot.

This is trickier, because you have to hunt for the answer on the ROOT web site... and

when you see the answer, you may be tempted to change it instead of typing in exactly
what's on the web site.

Take a look at the description of the TH1::Draw() method. In that description, it says "See
THistPainter::Paint for a description of all the drawing options". Click on the link. There's
lots of interesting stuff here, but scroll down and focus on the section on "Fit Statistics".

Exercise 5 (10 minutes)

Now add another plot: a scatterplot of "chi2" versus "ebeam". Don't forget to label the
axes!
Hint: Remember back in Exercise 1, | asked you to figure out the name "TF2" given that
the name of the 1-dimensional function class was "TF1"? Well, the name of the 1-

dimensional histogram class is "TH1F", so what do you think the name of the two-
dimensional histogram class is? Check your guess on the ROOT web site.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 28 of 33

Calculating our own variables (5 minutes)

The variables in the n-tuple are interesting, but there are other quantities that we may be
interested in. One such quantity is Py which is defined by:

pr=1pi+ P

This is the transverse momentum of the particle, that is, the component of the patrticle's
momentum that's perpendicular to the z-axis.

Let's calculate our own values in an analysis macro. Start fresh by copying our
AnalyzeComments example again:

> cp Anal yzeConments. C Anal yzeVari abl es. C
In the Loop section, put in the following line:
Float t pt = TMath::Sqrt (px*px + py*py);
What does this mean?

Whenever you create a new variable in C++, you must say what type of thing it is.
Actually, we've already done this in statements like

TF1 func("user", "gaus(0)+gaus(3)")

This statement creates a brand-new variable named "func”, with a type of "TF1". In the

Loop section of AnalyzeVariables, we're creating a new variable named "pt", and its type
is "Float_t".

For the purpose of the analyses that you're likely to do, there are only two types of
numeric variables that you'll have to know: "Float_t", which is used for real numbers, and
"Int_t", which is used for integers. (For C++ experts: the reason why we don't just use the
built-in types "float" and "int" is discussed on page 22 of the ROOT Users Guide.)

ROOT comes with a very complete set of math functions. You can browse them all by
looking at the TMath class on the ROOT web site. For now, it's enough to know that
TMath::Sqgrt() computes the square root of the expression within the parenthesis "()".

Test the macro in AnalyzeVariables to make sure it runs. Y ou won't see any output, but
welll fix that in the next exercise.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 29 of 33

Exercise 6 (10 minutes)

Revise AnalyzeVariables.C to make a histogram of the variable "pt". Don't forget to label
the axes; remember that the momentaarein GeV.

If you want to figure out what the bin limits of the histogram should be, I'll permit you to
“cheat" and use the following command interactively:

treel->Draw("sqrt (px*px + py*py)")

Exercise 7 (15 minutes)
The quantity "theta", or the angle that the beam makes with the z-axis, is calculated by:

9=arctan(&)

z

The units are radians. Revise AnalyzeV ariables.C to include a histogram of theta.

I'll make your life a little easier: the math function you want is TMath::ATan2(y,x), which
computes the arctangent of y/x. It's better to use this function than TMath::ATan(y/x),
because the atan2 function correctly handles the case when x=0.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 30 of 33

Applying a cut (10 minutes)

The last "trick” you need to learn is how to apply a cut in an analysis macro. Once you've
absorbed this, you'll know enough about ROOT to start using it for real physics analysis.

The simplist way to apply a cut in C++ is to use the "if" statement. This is described in
every introductory C and C++ text, and | won't go into detail here. Instead I'll provide an
example to get you started.

Once again, let's start with afresh Analyze macro:
> cp Anal yzeComments. C Anal yzeCuts. C

Our goal isto count the number of events for which pz islessthan 145 GeV. Since we're
going to count the events, we're going to need a counter. Put the following in the Set-up
section of AnalyzeCuts.C:

Int_t pzCount = O;

For every event that passes the cut, we want to add one to the count. Put the following in
the Loop section:
if (pz < 145)
{
pzCount = pzCount + 1;

Be careful: it's important that you surround the logical expression "pz < 145" with
parentheses "()", but the "if-clause" must use curly brackets "{}".

Now we have to display the value. Again, I'm going to defer a complete description of
formatting text output to a C++ textbook, and simply supply the following statement for
your Wrap-up section:

cout << "The nunber of events with pz < 145 is " << pzCount << endl;
When | run this macro, | get the following output:
The nunber of events with pz < 145 is 14962

Hopefully you'll get the same answer.

Jun 7, 2002 Basic Data Analysis Using ROOT Page 31 of 33

Exercise 8 (15 minutes)

Go back and run the macro you created in Exercise 5. If you've overwritten it, you can
copy my version:

> cp ~seligman/root-cl ass/ Anal yzeExerci se5. C $cwd
The chi2 distribution and the scatterplot hint that something interesting may be going on.

The histogram, whose limits | originally got from the command tree1->Draw("chi2")", looks
unusual: there's a peak around 1, but the x-axis extends far beyond that, up to chi2 > 18.
Evidentally there are some events with a large chi2, but not enough of them to show up
on the plot.

On the scatterplot, we can see a dark band that represents the main peak of the chi2
distribution, and a scattering of dots that represents a group of events with anomalously
high chi2.

The chi2 represents a confidence level in reconstructing the particle's trajectory. If the the
chi2 is high, the trajectory reconstruction was poor. It would be perfectly acceptable to
apply a cut of "chi2 < 1.5", but let's see if we can correlate a large chi2 with anything else.

Make a scatterplot of "chi2" versus "theta". It's easiest if you just copy the relevant lines
from your code in Exercise 7; again, there's afile AnalyzeExercise7.C in my areaif that
will help.

Take a careful look at the scatterplot. It looks like all the large-chi2 values are found in the
region theta > 0.15 radians. It may be that our trajectory-finding code has a problem with
large angles. Let's put in both a theta cut and a chi2 cut to be certain we're looking at a
sample of events with good reconstructed trajectories.

Use an "if" statement to only fill your histogramsif chi2 < 1.5 and theta< 0.15. You
should change the bin limits of your histograms to reflect these cuts; for example, there's
no point to putting bins above 1.5 in your chi2 histograms since you know there won't be
any eventsin those bins.

It may help to remember that the symbol for logical AND in C++ is "&&".

A tip for the future: in a real analysis, you'd probably have to make plots of your results
both before and after cuts. A physicist usually wants to see the effects of cuts on their
data.

| must confess: | cheated when | pointed you directly to theta as the cause of the high-
chi2 events. | knew this because | wrote the program that created the tree. If you want to
look at this program youself, go to the UNIX window and type:

> | ess ~seligman/root-class/ CreateTree. C

Jun 7, 2002 Basic Data Analysis Using ROOT Page 32 of 33

Exercise 9 (optional)

Assuming arelativistic particle, the measured energy of the particle in our example n-
tupleisgiven by

Erees= Py + P+ P;
and the energy lost by the particleis given by
E E E

loss— “=beam “meas

Create anew analysis macro to make a scatterplot of E, vs. "zv". Istherea
relationship between the z-distance travelled in the target and the amount of energy lost?

Exercise 10 (optional)

In all the analysis macros we've worked with, we've drawn any plotsin the Wrap-up
section. Pick one of your analysis macros that makes histograms, and revise it so that it
does not draw the histograms on the screen, but writes them to afile instead. Make sure
that you don't try to write the histograms to "experiment.root”; write them to a different
file named "analysis.root". When you're done, open "analysis.root" in ROOT and check
that your plots are what you expect.

Hints:

» In"Saving your work, part 2", earlier in this tutorial, | described all the commands
you're likely to need.

- Don't forget to use the ROOT web site as a reference. Here's a question that's also a
bit of a hint: What would be the difference between opening your new file with
"UPDATE" access, "RECREATE" access, and "NEW" access? Why might it be a bad
idea to open a file with "NEW" access? (A hint within a hint: what would happen if you
ran your macro twice?)

Jun 7, 2002 Basic Data Analysis Using ROOT Page 33 of 33

