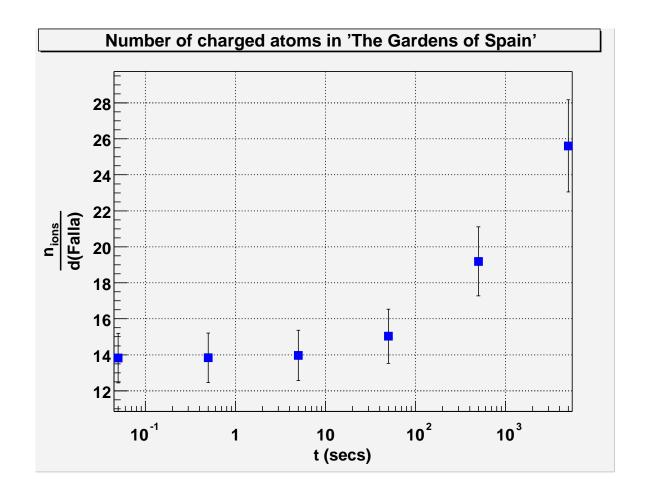
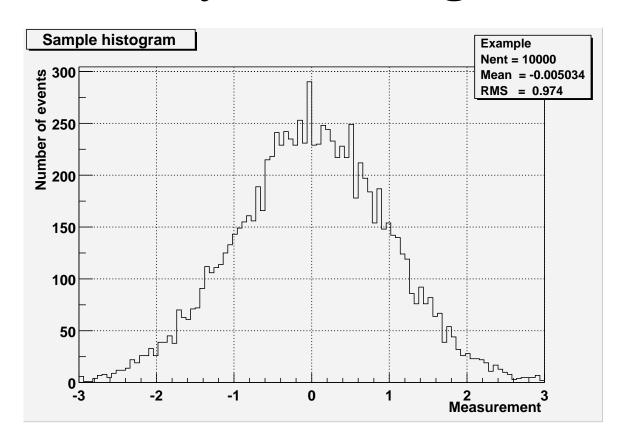

What is ROOT? Why do we use it?


Answer:

ROOT does what physicists do:

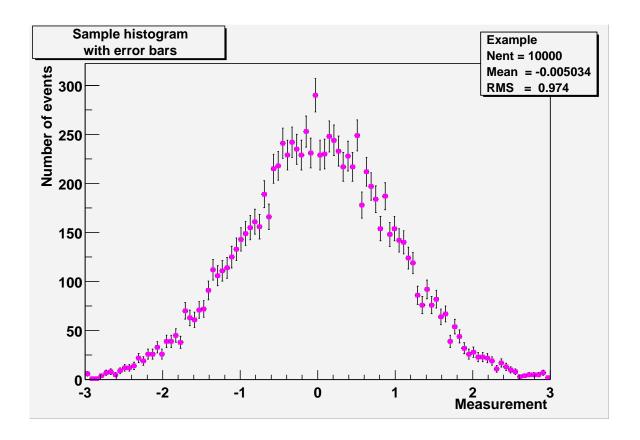
It makes plots.


Can you spot the pun in this plot?

Your analysis task:

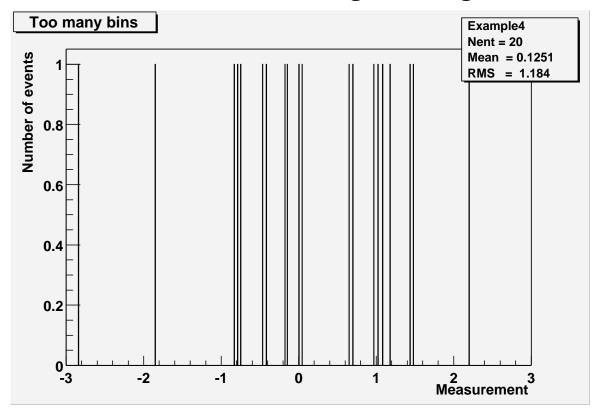
Take variables in an n-tuple and make histograms.

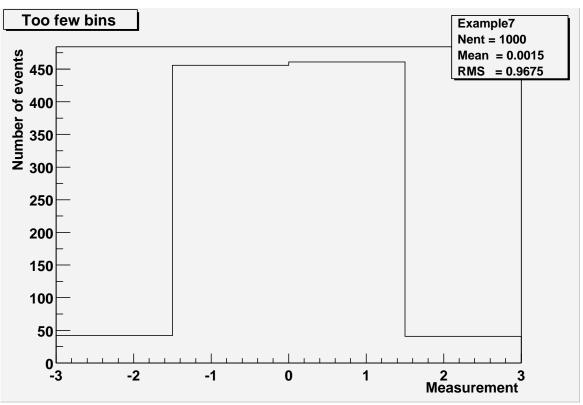
So what is a histogram and what is an n-tuple?


Anatomy of a histogram

Properties of a histogram:

- · Name or Identifier
- Title (to be displayed on plot)
- · Number of bins
- · Lower bin limit
- · Upper bin limit


TH1F hist("Example", "Sample histogram", 100, -3,3)



Don't forget the errors!

For simple histograms, the error in one bin is the square root of the number of events in that bin.

There's an art to histogram design:

Anatomy of an n-tuple (a simple form of a ROOT Tree)

Row	event	ebeam	рх	ру	pz	ZV	chi2
0	0	150.14	14.33	-4.02	143.54	22.26	0.94
1	1	149.79	0.05	-1.37	148.60	0.61	1.02
2	2	150.16	4.01	3.89	145.69	16.57	0.89
3	3	150.14	1.46	4.66	146.71	11.47	1.02
4	4	149.94	-10.34	11.07	148.33	0.37	0.85
5	5	150.18	17.08	-12.14	143.10	22.09	0.90
6	6	150.02	5.19	7.79	148.59	2.28	1.06
7	7	150.05	7.55	-7.43	144.45	21.40	0.97
8	8	150.07	0.23	-0.02	147.78	6.96	0.93
9	9	149.96	1.21	7.27	146.99	7.17	1.02
10	10	149.92	5.35	3.98	140.70	38.81	1.08
11	11	149.88	-4.63	-0.08	147.91	4.01	0.86
12	12	150.11	-1.96	11.46	147.41	6.76	1.08
13	13	150.02	-4.97	4.29	145.06	17.79	0.92
14	14	149.86	0.26	0.10	144.69	22.26	0.93
15	15	150.28	-7.50	1.49	147.64	7.07	1.02
16	16	149.94	2.19	-3.67	148.75	1.25	1.01
17	17	150.11	10.45	6.67	147.83	4.43	1.02
18	18	150.09	-0.56	-0.91	145.95	14.88	1.01
19	19	149.71	8.20	3.59	147.13	6.32	1.14
20	20	150.12	-7.09	-5.52	145.07	19.50	1.11
21	21	150.19	-4.00	-8.78	148.30	3.29	1.06
22	22	149.75	8.60	6.21	147.64	2.68	1.00
23	23	150.15	2.36	-3.34	148.47	2.00	0.86
24	24	149.79	-0.20	-0.18	147.52	7.03	0.92

An n-tuple is an ordered list of numbers.

A ROOT Tree can be an ordered list of any collections of C++ objects.

Why ROOT?

It knows about n-tuples and histograms.

It can handle large volumes of data (millions of physics events; files up to several gigabytes in size).

It's free.

Some history...

Software analysis packages

CERNLIB

1980-2000

Divided into distinct

packages:

PAW

HBOOK

HPLOT

HIGZ

ZEBRA

GEANT3

PYTHIA

JETSET

Based on FORTRAN

Fairly well documented

n-tuples (PAW-tuples)

ROOT

2003+?

Monolithic

(you only use the objects

you want, but it's all

part of ROOT)

Based on C++

Documentation in flux

Trees (ROOT-tuples)

Why switch at all?

Physics collaborations are getting bigger; the experiments are taking longer. The hope is that OO design will simplify long-term maintenance, at the cost of complexity.

More than you wanted to know about C++

Stephen Prata, C++ Primer Plus, 1998 Waite Group Press

An excellent introduction to C++.

Bjarne Stroiustrup, The C++ Programming Language, 1991 Addison-Wesley

The language reference manual.

David R. Musser and Atul Saini, *STL Tutorial and Reference Guide*, 1996 Addison–Wesley

The standard reference to the Standard Template Library.

Erich Gamma et al., Design Patterns, 1995 Addison-Wesley

The standard reference to the concept of Design Patterns.

Matthew H. Austern, Generic Programming and the STL, 1999 Addison-Wesley

The standard reference on generic programming, a different paradigm than OO.

Always get the latest edition!

More than you wanted to know about Statistics

Philip R. Bevington and D. Keith Robinson, *Data*Reduction and Error Analysis for the Physical
Sciences, 1992 McGraw-Hill

The standard introduction to scientific statistics — but beware of typos!

W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: a How-to Approach, 1994 Springer-Verlag

If you get a copy, keep it well hidden! This book is popular, often borrowed, and never returned!

David Freeman, Robert Pisani, and Roger Purves, Statistics, 1978 W. W. Norton & Company

Statistics for the social sciences — but everything is nicely derived from scratch.

Always get the latest edition!

The Hands-on Course:

Basic Data Analysis using ROOT

ROOT basics

You will learn how to:

look up ROOT command references plot a function get a variable from an n-tuple histogram a variable fit a histogram apply cuts

-- but not in this order!