Nevis Labs ROOT tutorial
Release 22.0.2

William Seligman

29-May-2022

CONTENTS

Introduction 3
Getting Started 5
A guide to this tutorial L e e e e e e e e e e 5
Getting started using your 1aptop L L. oL e e e e e e e 7
A brief introduction to Linux oL e e e e e 9
Walkthrough: Setting up ROOT (S minutes) o . o i it e e e e e 14
The Basics 15
Walkthrough: Starting ROOT (S minutes) 15
Walkthrough: Plotting a function (15 minutes) e 17
Exercise 1: Detective work (10 minutes) i i i e e e e e e 20
Walkthrough: Working with Histograms (25 minutes) 22
Walkthrough: Saving and printing your work (15 minutes) 25
Walkthrough: The ROOT browser (5 minutes) o v v i v vt i e e e et e e e e e e e 26
Walkthrough: Fitting a histogram (15 minutes) e 27
Walkthrough: Saving your work, part 2 (1S minutes) e 33
Example experiment n-tuple (10 minutes) o i e e e e e e 34
Using the Treeviewer o o o i e e e e e e e e e e e e e e e 37
The Notebook Server 41
Starting with Jupyter (S minutes) o e e e e e e e e e e e e 42
Your first notebook (10 minutes) e e e e e e e e e 43
Magic commands (S minutes) e e e e e e e e e e e e e e e 46
Markdown cells (S minutes) e e e e e e e e e e e e e 47
The ROOT C++ kernel (S minutes) o it et e e e e e e e e e e e e e e e e e 49
Decisions 51
C++orPython? . . . o L L e 52
Command-line or notebook? e 53
Diagonalizing the 2x2 decision matrix L e 55
The C++ Path 57
Differences between C++and Python oL 58
C++ Walkthrough: Simple analysis using the Draw command (10 minutes) 60
Pointers: A too-short explanation (for those who don’t know C++ or C) (5 minutes) 61
C++ Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes) 63
Walkthrough: Using C++ to analyze a Tree (10 minutes) 64
C++ Walkthrough: Running the Analyze macro (10 minutes) 66
C++ Walkthrough: Making a histogram with Analyze (15 minutes) 67

C++ Exercise 2: Adding error bars to a histogram (Sminutes) 0. 69

10

11

12

Exercise 3: Two histograms in the same loop (15 minutes)
Exercise 4: Displaying fit parameters (10 minutes) L oo
Exercise 5: Scatterplot (10 minutes)« o o o it e e e e e e e e e e e e e
Walkthrough: Calculating our own variables (10 minutes)
Exercise 6: Plotting a derived variable (10 minutes) o
Exercise 7: Trig functions (15 minutes) o0 e
C++ Walkthrough: Applyingacut (10 minutes) 0 i it i e et e e e
Exercise 8: Picking a physics cut (IS5 minutes) e
Exercise 9: A bit more physics (IS5 minutes) o
Exercise 10: Writing histograms to a file (10 minutes)
Exercise 11: Stand-alone program (optional) (60 minutes or more if you don’t know C++)

The Python Path

A briefreview (Sminutes) e e e e e
Python Walkthrough: Simple analysis using the Draw command (10 minutes)
Python Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes)
Walkthrough: Using Python to analyze a Tree (10 minutes)
Walkthrough: Using the Python Analyze script (10 minutes)
Python Exercise 2: Adding error bars to a histogram (5 minutes)
Python Exercise 3: Two histograms in the same loop (15 minutes)
Python Exercise 4: Displaying fit parameters (10 minutes)
Python Exercise 5: Scatterplot (10 minutes) o v v i i e e e e e e e
Python Walkthrough: Calculating our own variables (10 minutes)
Python Exercise 6: Plotting a derived variable (10 minutes)
Python Exercise 7: Trig functions (15 minutes) e
Python Walkthrough: Applying acut (10 minutes) i
Python Exercise 8: Picking a physics cut (15 minutes)
Python Exercise 9: A bit more physics (IS minutes) o e
Python Exercise 10: Writing histograms to a file (10 minutes)
Python Exercise 11: Stand-alone program (optional) (30 minutes)

Intermediate Topics

References L L e
Advanced histogramming notesl e e e
Directories in ROOT
JupyterLab o e e e e e e e e e
Dataframes e e e e e
More to eXploTe e e e e e e e e e e e e e e e e
Installing ROOT on your own COMPULET v v vttt e et e e e e e e e e e e e e e e

Advanced Exercises

Working with folders inside ROOT files
CH+ Container Classes o o L e e e e e e e e e e e e
Exercise 12: Create a basic x-y plot (1-2.5hours)
Exercise 13: A more realistic x-y plotting task (1-2hours)

Expert Exercises
Exercise 14: A brutally realistic example of a plotting task (1-2hours)
Exercise 15: Datareduction (1-2hours) e e e e e

Wrap-up
Appendix

A too-brief and too-long introduction to statistics L.
Programming Tips L L e e e e e e e e

83
84
87
88
89
91
93
95
96
97
98
99
100
101
102
103
104
105

107
108
110
112
114
116
118
119

127
128
130
133
137

139
140
143

147

Batch Systems L e e e e

13 Version History

Nevis Labs ROOT tutorial, Release 22.0.2

Release: 22.0.2
Generated: 29-May-2022

CONTENTS 1

Nevis Labs ROOT tutorial, Release 22.0.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

What

This is an introductory “hands-on” tutorial on ROOT, a C++ and Python-based data-analysis software toolkit developed
at CERN, a high-energy particle-physics accelerator research facility on the French-Swiss border.

Who

The target audience for this workshop are undergraduate students in the sciences who are looking for summer research
experience; for example, those in the US National Science Foundation’s Research Experience for Undergraduates
(REU) program.

Many parts of this tutorial are optional or are advanced exercises. No one expects you to get through all these pages
before you start your physics work for the summer. Much of the material, especially from Intermediate Topics on, is
intended to use as a reference if you continue to use ROOT in the future.

However, I tried to “aim low” in terms of expectations on the required knowledge of computing, math, and science.
Anyone with access to a computer with ROOT installed, or with a laptop on which they’re willing to put in the effort
to install ROOT, should be able to work their way through this material.

Where

This workshop is taught at Nevis Labs. I’ve provided a number of convenient resources for those with login access to
the Nevis particle-physics Linux cluster, such as a JupyterHub server with ROOT pre-installed. Therefore, some of the
set-up instructions are Nevis-specific.

I’ve tried to provide alternative instructions for anyone to be able to take this tutorial, even if they’re not at Nevis. There
are several ways to install ROOT, and any files can be easily copied.

In addition to the web site you’re reading now, you can find this tutorial in PDF format, along with related material, on
my ROOT Tutorial page.

How

The lessons have time estimates at the top. These are only rough estimates. Don’t be concerned about time. The
important thing is for you to learn something, not to punch a time clock.

If you’re programming for the first time, then the exercises are challenging. Getting to all but the last exercise (the
stand-alone program) in either The C++ Path or The Python Path is a respectable achievement on its own.

On the other hand, if the class seems too easy, just keep going. I gradually ramp up the difficulty. The lessons do not
stay at the level of “ROOT does what physicists do.”

When

This tutorial started as a one-day class I taught at Columbia University’s Nevis Laboratories in 2001. Over the years,
I’ve revised it as different versions of ROOT came out, and in response to comments received from the students.

Why

https://root.cern.ch/
https://cern.ch/
https://www.nsf.gov/
https://www.nsf.gov/crssprgm/reu/
https://www.nsf.gov/crssprgm/reu/
https://nevis.columbia.edu/
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/LinuxCluster
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
https://www.nevis.columbia.edu/~seligman/root-class/files/
https://www.nevis.columbia.edu/~seligman/root-class/
https://www.columbia.edu/
https://nevis.columbia.edu/

Nevis Labs ROOT tutorial, Release 22.0.2

Disclaimer

Although the developers of ROOT have always been ready to answer my questions, they have had no direct input on
the contents of this tutorial.

In particular, they had no say in the flippant, humorous, and occasionally sarcastic tone in which I’ve decided to present
the material. This includes the over-use of smart-aleck footnotes and xkcd cartoons.'

Any errors in this tutorial are my own.’
Which

At the end of the summer, let me know which parts you found useful or useless to you. I'll consider your suggestions
for next year’s workshop.

Have fun!

— Bill Seligman

! I’ve included a link in each figure caption of any xkcd cartoon I use. However, I don’t include the hover-text, which is occasionally funnier than
the cartoon itself. For extra added xked goodness, click on the link in the figure caption and hover your mouse over the cartoon.
2 Unless someone else wants to take responsiblity for a given blunder on my part, in which case I'll gladly cede the privilege.

4 Chapter 1. Introduction

https://xkcd.com
http://www.nevis.columbia.edu/cgi-bin/ewarn.pl?seligman&nevis.columbia.edu

CHAPTER
TWO

GETTING STARTED

A guide to this tutorial

You may be used to interacting with a computer solely through a graphical user interface (abbreviated GUI). If so, that
will change with this course: you’re going to learn how to type UNIX commands. Don’t worry; I’ll walk you through
it.

You’ll also have to learn about ROOT commands. Here are the clues to give you context:

If you see a command in this tutorial that’s preceded by “[]”, it means that it is a ROOT command. Type that command
into ROOT without the “[]” symbols. For example, if you see

[] .x treeviewer.C

it means to type .x treeviewer.C at a ROOT command prompt.

[T

If you see a command in this tutorial preceded by “>” it means that it is a UNIX shell command. Type that command
into UNIX, not into ROOT, and without the “>” symbol. For example, if you see

> man less

it means to type man less at a UNIX command prompt.

In the Python portions of this tutorial, the prompt is “In []”. For example:

> ipython
In[] from ROOT import TH1

ROOT, Python, and Jupyter will put a session line number in brackets; e.g., [0], [1], [2]; In [0], In [1], In [2]. I’1l omit
the line numbers from this tutorial.

Note: Paragraphs in this style are hints, tips, and advice. You may be able to get through this tutorial without reading
any of this text... but I wouldn’t count on it!

If you’re sharp of eye and keen of sight, you’ll also notice that I use different styles for Linux commands, program
names and variables, and menu items.

Tip: There are a lot of footnotes in this course. Some are serious. Some are humorous. Some think they are funny
but are not.

Clickable footnote navigation in a web-based viewer can be puzzling at first, so I'll spell it out: If you see a footnote
number, you can click on it to be taken to the portion of the page that contains the footnote. To return from whence

Nevis Labs ROOT tutorial, Release 22.0.2

you came, you can either click on the back button in your reader, or you can click on the footnote’s number to the left
of the footnote.

SOWE PREBLEMS ! CREATE PROBLEMS
= ! >
—8— 8- - *—

TOOS THAT ToOLS THAT TOOLS THAT NEED TOOLS WHOSE MANUAL
DONT NEED NEED A A MANVAL BUT S'I'HF;‘I'SLJITH"HDU‘]E
A MANDAL MANUAL DONT HAVE ONE READ THIS MANUVAL

Figure 2.1:: http://xkcd.com/1343 by Randall Munroe

Chapter 2. Getting Started

http://xkcd.com/1343

Nevis Labs ROOT tutorial, Release 22.0.2

Getting started using your laptop

SSH and X11

You’ll need ssh to connect to a remote server that has ROOT installed. ROOT uses a graphics protocal called X11 for
its interactive display.'

If you’ve never installed ssh or X11 on your computer, these two pages will guide you through the process:
* Initial laptop setup
¢ Installing X11

If you have an account on one of the Nevis particle-physics systems, these sites were included in the introductory email
I sent you with details about your account.

In case it’s not obvious: For the rest of this tutorial, I'll assume you’ve read the above web pages, know how to use ssh
to connect to your Nevis server (or some other computer system that includes ROOT),? or have your own installation.

Escape from the gooey GUI

You may be used to a graphical user interface (GUI) instead of the command line; for example, opening a file with an
appropriate application by double-clicking on its icon in a window. For copying and editing files, or developing code,
I recommend against a GUI; almost all physics development work is done on the command line.

This GUI advice won’t apply if you start using ROOT notebooks. We’ll get to that later.

Terminals

You will need at least two terminal windows open during parts of this tutorial. One window I’ll call your “ROOT
command” window; this is where you’ll run ROOT. Another is a separate “UNIX command” window.

Your existing terminal program includes some way of showing multiple windows or tabs; look through its menus for
something like “New Window”. If you’re using a laptop to connect to a remove server, you’ll have to separately use
ssh to login to that server in each window.

Tip: Ilike to open a new tab instead of a new separate window, but you can use whichever mode you prefer. I suggest
you try both methods to find out which one suits you.

Installing ROOT on your laptop

Don’t.

If this is too short and snarky for you, I’ll elaborate: You may correctly deduce that setting up ROOT on your own
computer system is not a trivial task. It is not an app you can double-click to install. To avoid a hassle, I suggest
logging into Nevis servers or using the Nevis notebook server for this course if you are able to do so.

The reason why I installed ROOT on the Nevis particle-physics systems and prepared the notebook server is so students
and researchers affiliated with Nevis can spend less time on software installations, and more time on learning how to
use the tools to do physics.

! Very strictly speaking, if you're going to install ROOT on your own computer, you don’t need ssh. As a practical matter, if you’re going to be
working in science, you’ll find ssh and its related tools (scp, sftp) to be useful.
2 Don’t forget the -XY or some other method of forwarding an X11 connection to that server.

. Getting started using your laptop 7

https://en.wikipedia.org/wiki/Secure_Shell_Protocol
https://en.wikipedia.org/wiki/X_Window_System
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/InitialLaptopSetup
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/X11OnLaptops

Nevis Labs ROOT tutorial, Release 22.0.2

Let’s do physics.

Note: If the above is not enough to dissuade you, or you don’t have a choice because you don’t have a connection to
either Nevis or another institution with ROOT already installed, I offer the nitty-gritty details of installing ROOT .

8 Chapter 2. Getting Started

Nevis Labs ROOT tutorial, Release 22.0.2

A brief introduction to Linux

If you’re already familiar with UNIX, you can just skim or skip these topics.

You can spend a lifetime learning UNIX; I've worked with it since 1993 and I'm still learning something new every
day. The commands in the following topics, limited to what you’ll need for the basics, barely scratch the surface.

Directories in UNIX

Note: If you’re one of those people who’s only used a GUI, or you save all of your files on your Desktop, this sub-
section is for you. There are plenty of web sites that discuss directories; this is just a brief overview.

The “folders” that you see when you look at your GUI are actually directories in your operating system. That tells you
what a directory is: a container for other files, including other directories. The separator for directory names is “/”’, so
a/b/c is directory c within directory b within directory a.’

Everything in UNIX is within a directory. Yes, even your Desktop; typically, that is a directory whose name is ~/
Desktop. That leads us to common abbreviations and commands for directories when you’re using the command
line:

+ ~<account> means the home directory of the user <account>”. Just plain ~ means your own home directory.
So ~/Desktop means a directory named Desktop within your home directory.

¢ cd is the command to “change directory.” It’s the usual way to go from one directory to another. If there were a
directory named Root? in your home directory, you could visit that directory with:

> cd ~/Root

» .. isareference to your parent directory, the one “above” the one you’re currently in. If you wanted to return to
your home directory from ~/Root, you could type:

> cd

If you use the cd command without any arguments, it will return you to your home directory:*

> cd

* To look at the contents of your current directory, use the 1s command:

> 1s

You can also list the contents of any other directory (for which you have permission to view):

! Now you know why it’s hard to put a / in a folder name: The operating system can’t tell the difference between a / that’s within a folder name
versus a / that is a directory separator.

2 1t’s always something like “~seligman” (tilde-seligman), never “—seligman” (dash-seligman). Depending on the exact font used to print or
display this tutorial, sometimes tildes look like dashes. On most keyboards, tilde is typed with SHIFT-" where * (backtick) is near the upper-left-hand
corner of the keyboard.

3 UNIX is normally a case-sensitive operating system. ~/Root, ~/ROOT, and ~/root are three different directories. Exception: In Mac OS
Darwin, file names are case-insensitive; all three of those directories would be the same.

4 Knowing this will become useful in the future, as you become more sophisticated in your use of UNIX. Eventually you’ll learn about shell
variables. Sooner or later, you’ll make a typo in a variable name; e.g.,

cd SROTSYS
Instead of going to $ROOTSYS, your intended destination, you’ll find yourself in your home directory. That’s because $ROTSYS doesn’t have a
value, so UNIX interpreted this as the cd command without any arguments.

. A brief introduction to Linux 9

https://www.tutorialspoint.com/unix/unix-directories.htm

Nevis Labs ROOT tutorial, Release 22.0.2

> 1ls ~seligman/root-class

* If you forget which directory you’re in, use the pwd (“print working directory”) command:

> pwd
S0 T THOUGHT BUT ITCONTAINS A | T THINK THERE'S NO
BUNCH MORE FOOERS, | ACTUAL HERE.
T FONDYOR FILLED WITH MORE L PR

FoRN FOLDER N iy YOURE JUST TORNED
calendar/backup/FORN/ H:umms’mﬁmm ,.ET SE':N‘" ON BY FILESYSTEMS,

SOMEHOW T'™M BACK AT IT’s A HARDUNKED
4
\ ITS, UM, WELL S0 TRR(D!
\ HIDDEN.

" o NOW T FEEL*,“.

3 _ DIRTY SHARING

A DRIVE

[WITH Y.

(b

Figure 2.2:: https://xkcd.com/981/ by Randall Munroe. Moral: Be careful how you organize your directories!

Other UNIX commands

e To copy a file: use the cp command.'

For example, to copy the file CreateSubdirectories.C from the directory ~seligman/root-class to your
current working directory, type:

> cp ~seligman/root-class/CreateSubdirectories.C $PWD

In UNIX, $PWD means the results of the pwd command.?
* To look at the contents of a text file: Use the 1ess command.’

This command is handy if you want to quickly look at a file without editing it. To browse the contents of file
CreateSubdirectories.C, type:

> less CreateSubdirectories.C

While less is running, type a space to go forward one screen, type b to go backward one screen, type g to quit,
and type h for a complete list of commands you can use.

I As students began to use laptops, I noticed that many of them had an interesting misconception: The cp command copies a file from one place
to another on the same computer. It does not copy a file from a remote server to your laptop! For that you use scp; use man scp to learn more. Note
that if you’re working on a remote server such as the ones at Nevis, there’s no reason to use scp for this tutorial.

2 A period (.) is the usual abbreviation in UNIX for “the current directory” (did you remember that .. means “the directory above this one”?)
but many students missed the period the first time I taught this class.

3 If the name is confusing: the less command was created as a more powerful version of the more command.

10 Chapter 2. Getting Started

https://xkcd.com/981/

Nevis Labs ROOT tutorial, Release 22.0.2

* To get help on any UNIX command: type man <command-name>

While man is running, you can use the same navigation commands as less. For example, to learn about the
less command, type:

> man less

* To edit a file: 1 suggest you use emacs.? For example, to edit the file CreateSubdirectories.C:

> emacs CreateSubdirectories.C

This may appear to “lock up” your UNIX window. If this is an issue, either create a new UNIX window or learn
about ampersands at the end of a command line.

The emacs environment is complex, and you can spend a lifetime learning it.> For now, just use the mouse
to move the cursor and look at the menus. When you get the chance, I suggest you take the emacs tutorial by
selecting it under the Help menu.

Tip: Are you quitting emacs after you change a file, only to start up the editor again a moment later? Hint: look at the
File menu. If you’'re editing many files, try opening them all with File->Open File... and switch between them using
the Buffers menu. Remember to use File->Save once in a while.

Learn how to cut and paste in whatever editor you use. If you don’t, you’ll waste a lot of time typing the same things
over and over again.

4 If you’re already familiar with another text-based UNIX editor, such as nano or vim, you can use it instead.

If you’re not using a remote UNIX server and you’re editing files on your laptop, make sure you're using a plain-text editor. If you use an editor
whose default mode is to not save files in plain text (Microsoft Word is one example; the poorly-named TextEdit on the Mac is another) you’re going
to get confused. If you don’t already have such an editor, I suggest Notepad++ on MS-Windows and the free version of BBEdit for the Mac.

On a Mac, emacs is built-in and you can use it from within Terminal. You’ll get the screen-based version instead of the window-based version;
do not put & after the command. You’ll also need to take the tutorial immediately, as suggested in emacs’ “Welcome” screen, since the editing
keypresses for the screen-based emacs are not obvious.

3 I've spent two of your lifetimes already, and the class has just started!

. A brief introduction to Linux 11

https://bashitout.com/2013/05/18/Ampersands-on-the-command-line.html
https://notepad-plus-plus.org/
https://www.barebones.com/products/bbedit/

Nevis Labs ROOT tutorial, Release 22.0.2

nono? REAL HEY. REAL WELL, REAL NO, REAL | |REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS | | PROGRAMMERS | |PROGRAMYERS| | PROGRAMMERS | | USE AMAGNETIZED | | REAL PROGRAMMERS
USE emocs USE vim. USE ed. USE cot. NEEDLE AND A USE BUTTERFLIES.
\ / | | STEADY HAND. \
] /
THE DISTURBANCE RIPPLES WHICH ACT AS [ENSES THAT NICE.
THEYOPEN THEIR | QUTVJERD, CHANGING THE FLOW DEFLECT INCOMING COSMIC COURSE, THERE'S AN EMACS
HANDS AND LET THE. | OF THE EDDY (URRENTS RAYS, FOCUSING THEM TO COMMAND TO DO THAT.
DELICATE WINGS FLAPONCE.| |\ THE UPPER ATMOSPHERE. STRIKE THE DRIVE PLATTER | .
—ewr———— AND FLIP THE DESIRED BIT. OH YEAH! GOOD (L
r(y - -'r .:' ___ _ Cx T'1'£\ ﬂ'b@ﬁtrﬂg
ow t '} ™ 1 »
%, ey) ,
= -l er
e tger] | f
THESE CAUSE M ARY POCKETS = e =
OF HIGHER-PRESSURE ARTO FORM, \\ f// DAMAIT, EMACS.

Figure 2.3:: http://xkcd.com/378 by Randall Munroe. If you're feeling bored, type Meta-x butterfly in emacs and
see what happens.

UNIX command-line tricks

When you’re typing commands in ROOT, IPython, or UNIX, your two best friends are the TAB key and the up-arrow
key.

Try it: On a Nevis system, on the UNIX command line, type (<TAB> means to hit the TAB key):

> cp ~seli<TAB>roo<TAB>Cre<TAB>S<TAB> $PWD

You’ll see how UNIX does its best to fill in the remainder of a word, up to the point for which there’s a choice.

Now list the contents of files in your current directory:

> 1s

Let’s execute that copy command again. You don’t have to type it again, even with the help of tab-completion; just hit
the up-arrow key twice and press ENTER.

Note: Did you look at the emacs tutorial I mentioned above? If you did, you saw that it starts with a discussion of
using special keypresses for cursor navigation. Perhaps you thought, “Have they never heard of a mouse?” If you did,
you were right: the emacs tutorial was written before GUIs and computer mice were known outside of Xerox PARC.

Those same key-based navigation commands work on the UNIX and ROOT command lines. You don’t have to type
the long commands in this tutorial, at least not more than once. With the help of tab-completion, the up-arrow key,
navigation keypresses, and cut-and-paste, you can edit your previous commands for new tasks.

12 Chapter 2. Getting Started

http://xkcd.com/378
https://en.wikipedia.org/wiki/History_of_the_graphical_user_interface

Nevis Labs ROOT tutorial, Release 22.0.2

Tip:

If you ask me to help you with a problem during the class and I start typing commands for you, you’re going

to see me use the up-arrow key, then Ctrl-A, Ctrl-E, Meta-F, and Meta-B to jump the cursor through the commands

you’ve typed and make changes.

I’ve grown so used to those navigation commands that when I edit a file, [use emacs -nw (for “no windows”) and skip
the GUI features like menus and mouse-clicks. It’s usually faster for me to keep my hands on the keyboard.

LAST NIGHT T WAS WATCHING
VIDEOS WITHTHIS GIRL AND
MY MONITORS KEPT TURVING
OFF — EVEN THOUSH THAD
DISABIED PONER SAVE. |

HOWEVER! T WROTE A
COMMAND T0 JIGGLE THE
MOUSE. POINTER EVERY
COUPLE MINUTES T0 KEEP

=3,

IT FROM G?IPG IDLE.

KX

To DEAL WiTH THEM—,

NOT THE FIRSTHACK LD
TRY, BUT SEE? LINUX
HAS PROBLEMS, BUT IT
GIVES YOU THE TooLsS

ACTUALLY, | WAS HALF
AN HOUR INTo THE
POINTER CRIPTNG
DOCUMENTATION
WHEN SHE GOT
DRES4ED AND LEFT

Figure 2.4:: http://xkcd.com/196 by Randall Munroe

Note: Either of these two sites offer a good introduction to UNIX:'

e UNIX Tutorial for Beginners

e Learn UNIX

brh!uxz A TRUE <TORY: WEEK TWO | WEEK 3Six WEEK TWELVE |
EEK ONE | IT SAYS MY XORG DUE TO AUTO - YOU HAVEN T ANSWERED
HEY, ITS YOUR COUSIN | | IS BROKEN. \wpaT's| | CONFIG ISSUES, Tm | | YoUR PHONE IN DaYs,
T GOT A NEW COMPUTER AN "XORG'? \yERe | | LEAVING LRBUNT CANT SIEEP
BUT DON'T WANT WINDOWs| | CAN T LOOK THATUP| | FOR DEBAN. (MusT comPie
CAN ‘I"GJ”HELP ME J KERNEL.
INSTALL “LINUX"? \’\} L HM, (UH
e | | B
~ GENToD.
SoRe. ~ MAN PrGES, \Q““ UHOH mE.fo;J
: e

PARENTS: TRLK. T YOUR,
KIDS ABOUT LINUDX. ..
BEFORE. SOMEBODY ELse DOES.

Figure 2.5:: <http://xkcd.com/456> by Randall Munroe

! For the purposes of this tutorial, “Linux” and “UNIX” are the same thing. Systems administrators know that Linux and Mac OS Darwin are
varieties of UNIX, but you’re not here to be a sysadmin... at least not for today.

. A brief introduction to Linux 13

http://xkcd.com/196
http://www.ee.surrey.ac.uk/Teaching/Unix/
https://www.tutorialspoint.com/unix/index.htm
http://xkcd.com/456

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Setting up ROOT (5 minutes)

Before you start using ROOT, you usually have to set it up.

If you’re not using one of the Nevis particle-physics systems, hopefully you have received instructions on how to set
up ROOT at your site. Now is the time to follow those directions.

If you are using one of the particle-physics systems at Nevis, type:

> module load root

Nevis specifics

The command module load root' sets some Unix environment variables and modifies your command and library
paths. If you need to remove these changes, use the command module unload root.

One of the variables that’s set is SROOTSYS. This will be helpful to you if you're following one of the examples in
the ROOT Users Guide. For example, if you’re told to find a file in SROOTSYS/tutorials (see the References section
of this tutorial, for example) you’ll be able to do this only after you've typed module load root.

You have to execute module load root once each time you login to Linux and use ROOT. If you wish this command
to be automatically executed when you login, you can add it to the .myprofile file in your home directory (but read
the warnings below before you do this).

Warning:

 It’s a Nevis convention to use ~/.myprofile for your custom shell setup. Other sites may tell you to edit
~/.profile, ~/.bashrc, ~/.bash_profile, ~/.zprofile, ~/.cshrc, ~/tcshrc, etc. There is a Nevis
wiki page on shell setup scripts.

» Even at Nevis, some physics groups work with software frameworks that have their own versions of ROOT
built-in; e.g., Athena in ATLAS or LArSoft in MicroBooNE. If you’re working with such a framework, you’ll
have a special set-up command to use; you must not use the generic Nevis module load root.

* Finally, do not put module load root in a start-up script if you're using the Nevis notebook server. You’ll
get lots of “not found” errors.

If you had to install ROOT on your own you already know whatever special set-up you need on your local computer.

! The module load UNIX command is part of a package called “environment modules.” Though it’s a standard package, environment modules
are not normally included in a default UNIX installation. Here’s a Nevis wiki page on available modules.

14 Chapter 2. Getting Started

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Shell
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/EnvironmentModules

CHAPTER
THREE

THE BASICS

Walkthrough: Starting ROOT (5 minutes)

ROOT is a robust, complex environment for performing physics analysis, and you can spend a lifetime learning it.'

To actually run ROOT, just type:

> root

Note: The window in which you type this command will become your ROOT command window. You’ll see some
“Welcome to ROOT” text in the window.

You can type .help to see a list of ROOT commands. You’ll probably get more information than you can use right
now. Try it and see.

For the moment, the most important ROOT line command is the one to quit ROOT. To exit ROOT, type .q. Do this
now and then start ROOT again, just to make sure you can do it.

Tip: Sometimes ROOT will crash. If it does, it can get into a state for which .q won’t work. Try typing .qqq (three
q) if .q doesn’t work; if that still doesn’t work, try five q, then seven q. Unfortunately, if you type ten q, ROOT won’t
respond, “You’re welcome.”

OK, that’s a dumb joke; I should leave the humor to xkcd. But the tip about .qqq, .qqqqq, and .qqqqqqq is legitimate.
Sometimes I find just typing g or using Ctrl-C also works.

Tip: ROOQOT can function as a calculator. If you want, in ROOT type 2+3 or sqrt(2) or whatever. I'm not going to
dwell on this aspect of ROOT, but it’s good to know it’s there.”

! That’s three lifetimes so far.
2 One of those ROOT quirks that makes you go “uhh...”: If you want to take the sine of 30 degrees you have to use sin(30.*TMath::Pi()/
180.)

15

Nevis Labs ROOT tutorial, Release 22.0.2

HEY, CHECK T OVT: @™~11 15 | DURING A COMPETITION, T
19.999099979. THATS WEIRD. | ToLD THE PROGRAMMERS ON
OUR TEAM THAT @"-1r
WAS A STANDARD TEST OF FLOATING -
POINT HANDLERS -- IT WOULD
(OME OUT To 20 UNLESS
THEY HAD ROUNDING ERRORS.

I

bR | ex | AR

Figure 3.1:: https://xkcd.com/217/ by Randall Munroe. If you want to try this in ROOT, it’s exp(TMath: :Pi()) -
TMath::Pi(Q)

THATS

YEAH, THEY DUG THRoUGH
HALF THEIR ALGORITHMS
LOOKING FOR THE BUG
BEFORE THEY FIGURED
IT OUT.

YEAH. THAT'S HOW I
GOT KICKED OUT OF
THE ACM N COLLEGE.

Chapter 3. The Basics

https://xkcd.com/217/

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Plotting a function (15 minutes)

Let’s plot a simple function. Start ROOT and type the following at the prompt:'

[T TF1 f1("funcl","sin(x)/x",0,10)
[f1.Draw()

Note: Note the use of C++ syntax to invoke ROOT commands.” ROOT may help you out with context-based colors
for the keywords it recognizes.

In C++ notation, the first command says: Create an object (“f1”) that is a TF1 (we’ll get to what that is in a moment)
with some properties (name, function, low range, high range). The second command tells f1 to draw itself.

When you type in the first command, you may see something like
(TF1 &) Name: funcl Title: sin(x)/x

Don’t worry about this. It’s not an error.’

If you have a keen memory (or you type .help on the ROOT command line), you’ll see that neither TF1 nor any of its
methods are listed as commands. The only place that the complete ROOT functionality is documented is on the ROOT
web site.*

Go to the ROOT web site at http://root.cern.ch/ (I suggest you bookmark this site’), click on Reference, then on A1l
Classes on the left-hand side, then on TF1; you may want to use the browser menu Edit->Find and search on TF1 to
locate that link.® Scroll down the page; you’ll see some documentation and examples, the class methods, then method
descriptions.

Note: Get to know your way around this web site. You’ll come back often.

Also note that when you executed £1.Draw() ROOT created a canvas for you named c1. “Canvas” is ROOT’s term
for a window that contains ROOT graphics; everything ROOT draws must be inside a canvas.’

Bring window c1 to the front by left-clicking on it. As you move the mouse over different parts of the drawing (the
function, the axes, the graph label, the plot edges) note how the shape of the mouse changes. Right-click the mouse on
different parts of the graph and see how the pop-up menu changes.

! I’m starting with “basic” ROOT, which has a command syntax based on C++. For Python users, we’ll explore pyroot later. For these simple
examples, the ROOT commands are almost the same in both languages anyway.

2 I'm simplifying. ROOT doesn’t use a C++ compiler, but an interpreter called “cling” that duplicates most of the C++ language specification.
It’s meant to provide an interactive experience similar to Python.

3 If it’s not an error, what is it? ROOT is printing out the type (TF1 &) and information about the object you’ve just created. When you become
more familiar with programming, you’ll see that ROOT is printing out the result of creating the TF1 object, in the same way it would print the result
if you typed 2+3.

4 If you remember the output from when you typed .help, you may be tempted to try .help TF1. Don’t bother. What will happen is that ROOT
will start up a web browser to take you to the TF1 page on the ROOT web site.

This may sound convenient, and it can be... if you're running ROOT directly on your laptop. However, if you’re running ROOT on a remote
server (as I recommend), it will start up the web browser on the remote server. Your screen will lock up for a couple of minutes as it pushes the web
browser graphics from the server to your screen, and the resultant browser window will be slow and laggy.

3 I suggest you also bookmark the location of the ROOT User’s Guide. It’s a trifle out-of-date (and hard to find on the ROOT web site), but it’s a
useful supplement to this tutorial. Here’s more on ROOT’s documentation.

6 Assuming that ROOT hasn’t reorganized their web site (which they do periodically) since I last reviewed this tutorial, here are the links to
ROOT’s list of classes and to the description of the TF1 class.

7 I'm simplifying again. The actual rule is that everything ROOT draws must be inside a “TPad”. Unless you want to add graphics widgets to a
window (e.g., buttons and menus), this distinction won’t matter to you.

. Walkthrough: Plotting a function (15 minutes) 17

http://root.cern.ch/
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/doc/master/annotated.html
https://root.cern/doc/master/classTF1.html

Nevis Labs ROOT tutorial, Release 22.0.2

Position the mouse over the function itself (it will turn into a pointing finger or an arrow). Right-click the mouse and
select SetRange. Set the range to xmin=-10, xmax=10, and click OK. Observe how the graph changes.®>’

Let’s get into a good habit by labeling our axes. Right-click on the x-axis of the plot, select SetTitle, enter “x [radians]”,
and click OK.

Note: Right-clicking on the axis title gives you a TCanvas pop-up, not a text pop-up; it’s as if the title wasn’t there.
Only if you right-click on the axis can you affect the title. In object-oriented terms, the title and its centering are a
property of the axis.

It’s a good practice to always label the axes of your plots. Don’t forget to include the units.

T THINK WE SHoULD MAYRE YOURE RIGHT,
GIVE IT PNOTHER SHOT. [I KvEw DATA WD CONVINGE YOU.
WE SHOULD BREAK NO, T JUST THINK L (AN DO
\ (R AND T O OUR RELATIONSHIP BEMER THAN SOMEONE WHO
’ (PROVE IT DOESN'T LABELHER AXES,

=

Figure 3.2:: https://xkcd.com/833/ by Randall Munroe

Do the same thing with the y-axis; call it “sin(x)/x”. Select the RotateTitle property of the y-axis and see what happens.

You can zoom in on an axis interactively. Left-click on the number “2” on the x-axis, and drag to the number “4”. The
graph will expand its view. You can zoom in as much as you like. When you’ve finished, right-click on the axis and
select UnZoom.

You have a lot of control over how this plot is displayed. From the View menu, select Editor. Play around with this a
bit. Click on different parts of the graph; notice how the options automatically change.

Select View->Toolbar; among other options, you can see how you can draw more objects on the plot. There’s no
simple Undo command, as there might be in a dedicated graphics program, but you can usually right-click on an object
and select Delete from the pop-up menu.

If you want to change the color of the function, right-click on the function and select SetLineAttributes.

Note: If you “ruin” your plot, you can always quit ROOT and start it again. We’re not going to work with this plot in
the future anyway.

You may notice Help menus and icons that appear to offer explanations, like ?. They worked in earlier versions of
ROOT. Unfortunately, at some point in the last few years these links stopped working, probably due to a reorganization
of the ROOT web site. Maybe the ROOT developers will fix this someday, but probably not: It’s just as easy to do a
web search of the form “cern root axis SetRange”.

8 Did you get something funky instead? You probably right-clicked on the axis, not the function. Quit ROOT and start from the beginning.
Question: Why did the graph change in such an unexpected way? For the answer, locate the description of the TAxis class on the ROOT web site
and look at the SetRange method within that class.

9 Note that ROOT handles the case where x=0 correctly. If you're a math major, this may make you think. What happens if you plot cos(x)/x?
tan(x)/x?

18 Chapter 3. The Basics

https://xkcd.com/833/

Nevis Labs ROOT tutorial, Release 22.0.2

OUR RELATIONSHIP ENTERED
ITs DECLINE AT THIS POINT.

T THAT'S WHEN YOU
STARTED GRAPHING
) EVERYTHING.

N\

\ . COINCIDENCE!

Figure 3.3:: https://xkcd.com/523/ by Randall Munroe. If you have a choice, ruin the plot. Don’t let the plot ruin you.

. Walkthrough: Plotting a function (15 minutes) 19

https://xkcd.com/523/

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 1: Detective work (10 minutes)

Duplicate the following plot:'

sin(x)*sin(y)/(x*y)

Figure 3.4:: Some detective work is required to duplicate this plot.

Hints

Look at the TF1 command above. If class TF1 will generate a one-dimensional function, what class might generate a
two-dimensional function?

If TF1 takes a function name, formula, and x-limits in its constructor, what arguments might a two-dimensional function
class use? Where could you check your guess?

With your first try, you probably got a contour plot, not a surface plot. Here’s another hint: you want the give the option
“surfl” (with quotes) to the Draw method.

If youre wondering how to figure out that “surfl” was an valid option to give to Draw(): Unfortunately, this is not
obvious in the current ROOT web site or documentation.

* Near the top of the TF1 description, it states “TF1 graphics function is via the TH1 and TGraph drawing func-
tions.”

* If you go to the TH1 class and look at the Draw () method, it says “Histograms are drawn via the THistPainter
class.”

I The colors don’t have to be the same, since the default colors change in different ROOT versions.

20 Chapter 3. The Basics

Nevis Labs ROOT tutorial, Release 22.0.2

* If you go to the THistPainter class, you'll see all the available Draw() options.

It’s a long chain of references, and I didn’t expect you to figure it out on your own. The point is to prepare you for
the kind of documentation searches you often have to do to accomplish something in ROOT; for example, Advanced
Exercises and Expert Exercises in this tutorial. Finding the “surf1” option is trivial by comparison!

. Exercise 1: Detective work (10 minutes) 21

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Working with Histograms (25 minutes)

Let’s create a simple histogram:

[1 THID h1("histl","Histogram from a gaussian",100,-3,3)

Note: Let’s think about what these arguments mean for a moment (and also look at the description of TH1D on the
ROOT web site).

* The ROOT name of the histogram is hist1.
+ The title displayed when plotting the histogram is “Histogram from a gaussian”.!
* There are 100 bins in the histogram.

e The limits of the histogram are from -3 to 3.

Question

What is the width of one bin of this histogram? Type the following to see if your answer is the same as ROOT thinks
it is:

[] hl.GetBinWidth(0)

Note that we have to indicate which bin’s width we want (bin O in this case), because you can define histograms with
varying bin widths.”

If you type
[hl.Draw()

right now, you won’t see much. That’s because the histogram is empty. Let’s randomly generate 10,000 values according
to a distribution and fill the histogram with them:

[] hl.FillRandom("gaus", 10000)
[1 hl.Draw()

The “gaus” function is pre-defined by ROOT (see the TFormula class on the ROOT web site; there’s also more later
in this tutorial). The default gaussian distribution has a width of 1 and a mean of zero.

You’ve probably already noticed the words “Mean” and “StdDev” in the upper right-hand corner of the plot. If you
need formal definitions, you can find them in Equations (8.1) and (8.2) later in this tutorial.

Question

For those who’ve know statistics: In this histogram, why isn’t the mean exactly 0, nor the width exactly 1?

Add another 10,000 events to histogram h1 with the FillRandom method (use up-arrow to enter the command again).
Click on the canvas. Does the histogram update immediately, or do you have to type another Draw command?

! Did you just ask “What is a ‘gaussian®?” I created a section on statistics just for you!

2 For advanced users: Why would you have varying bin widths? Recall the “too many bins” and “too few bins” examples that I showed in
the introduction to the class. In physics, it’s common to see event distributions with long “tails.” There are times when it’s a good idea to have
small-width bins in regions with large numbers of events, and large bin widths in regions with only a few events. This can result in having a large
number of events in every bin in the histogram, which helps with fitting to functions as discussed below and in he statistics section.

22 Chapter 3. The Basics

Nevis Labs ROOT tutorial, Release 22.0.2

Let’s put some error bars on the histogram. Select View->Editor, then click on the histogram. From the Error pop-up
menu, select Simple. Try clicking on the Simple Drawing box and see how the plot changes.

Note: With these options, the size of the error bars is equal to the square root of the number of events in that histogram
bin. Use the up-arrow key in the ROOT command window and execute the Fill1Random method a few more times;
draw the canvas again.

Question

Why do the error bars get smaller? Hint: Look at how the y-axis changes.

You will often want to draw histograms with error bars. For future reference, you could have used the following
command instead of the Editor:

[hl.Draw("e™)

Let’s create a function of our own:

[1 TF1 myfunc("myfunc","gaus",®,3)

_1(—PD)?
The “gaus” (or gaussian) function is actually Fpe 2 (P2) , where Py, P;, and P, are “parameters” of the function.

Let’s set these three parameters to values that we choose, draw the result, and then create a new histogram from our
function:

[1] myfunc.SetParameters(10.,1.0,0.5)

[1 myfunc.Draw()

[1 THID h2("hist2","Histogram from my function",100,-3,3)
[1 h2.FillRandom("myfunc", 10000)

[1 h2.Draw()

Note that we could also set the function’s parameters individually:

[1 myfunc.SetParameter(1l,-1.0)
[1 h2.FillRandom("myfunc", 10000)

Question

What'’s the difference between SetParameters and SetParameter? If you have any doubts, check the description of
class TF1 on the ROOT web site.

. Walkthrough: Working with Histograms (25 minutes) 23

Nevis Labs ROOT tutorial, Release 22.0.2

A WEIGHTED RANDOM NUMBER
GENERATOR JUST PRODUCED
A NE'-J BATCH OF NUMBERS.

LETS USE THEM TO
BUILD NHERHWE:S!

¥l

ALL SFORTS COMMENTARY

Figure 3.5:: https://xkcd.com/904/ by Randall Munroe

24

Chapter 3. The Basics

https://xkcd.com/904/

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Saving and printing your work (15 minutes)

By now you’ve probably noticed the Save sub-menu under the File menu on the canvas. There are many file formats
listed here, but we’re only going to use three of them for this tutorial.

Select Save->canvas-name.C from one of the canvases in your ROOT session. Let’s assume for the moment that you’re
working with canvas c1, so the file “c1.C” is created. In your UNIX window, type

> less cl1.C

Note: (If you get complaints about a file not found, the name of the canvas is “see-one,” not “see-ell.”) As you can
see, this can be an interesting way to learn more ROOT commands. However, it doesn’t record the procedure you went
through to create your plots, only the minimal commands necessary to display them.

Next, select Save->cl.pdf from the same canvas.

Tip: Not only is the PDF format useful if you want to print something, but it’s usually simple to embed a PDF file in
a paper or a presentation. You can’t embed a ROOT macro in a Powerpoint document and expect to see its graph!

Finally, select Save->cl.root from the same canvas to create the file c1.root. Quit ROOT with the .q command, and
start it again.

To re-create your canvas from the “.C” file, use the command

[.x cl.C

Note: This is your first experience with a ROOT “macro,” a stored sequence of ROOT commands that you can execute
at a later time. One advantage of the “.C method” is that you can edit the macro file, or cut-and-paste useful command
sequences into macro files of your own.'

You can also start ROOT and have it execute the macro all in a single line:

> root cl.C

Printing at Nevis

If you are physically in the Nevis research building, you can print out your PDF file with the command

> 1lpr -Pbw-research cl.pdf

If you want to print directly from the ROOT canvas, click on File->Print, type 1pr -Pbw-research in the first text
box and leave the second one empty. Again, the printer name “bw-research” only has meaning at Nevis.

! This is still useful if you’re working in pyroot, though you’ll have to do some translation from C++ to Python. This discussion may help with
that conversion.

. Walkthrough: Saving and printing your work (15 minutes) 25

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: The ROOT browser (5 minutes)

Note: The ROOT browser is a useful tool, and you may find yourself creating one at every ROOT session.

One way to retrieve the contents of file “cl.root” is to use the ROOT browser. Start up ROOT and create a browser
with the command:'+?

[] TBrowser tb
In the left-hand pane, scroll to the folder with the same name as your home directory.® Scroll through the list of files.
You’ll notice special icons for any files that end in “.C” or “.root”. If you double-click on a file that ends in “.C”:
« if the Editor tab is in front ROOT will display its contents in the editor window;
¢ if the Canvas tab is in front, ROOT will execute its contents.
Click on the Canvas tab, then double-click on ¢1.C to see what happens.

Now double-click on ¢l.root, then double-click on c1;1.

Note: Don’t see anything? Click on the Canvas 1 tab in the browser window.

What does “c1;1” mean? You're allowed to write more than one object with the same name to a ROOT file (this topic
is part of a lesson later in this tutorial). The first object has ““;1” put after its name, the second “;2”, and so on. You can
use this facility to keep many versions of a histogram in a file, and be able to refer back to any previous version.

At this point, saving a canvas as a “.C” file or as a “.root” file may look the same to you. But these files can do more
than save and re-create canvases. In general, a “.C” file will contain ROOT commands and functions that you’ll write
yourself; “.root” files will contain structured objects such as n-tuples.

As nifty as the ROOT browser is, for the work that you’ll do this summer you’ll probably reach the limits of what it can
do for you, especially if you have to work with large numbers of files, histograms, n-tuples, or plots.

Still, it’s nice to know that it’s there, in case (as the name suggests) you want to browse quickly through a couple of
ROOT files.

! It may take a long time for the TBrowser to start up. I’ve reported this issue to the ROOT Developers. Until then, I must ask you to be patient.
2 You may see someone using this command instead:

[1 new TBrowser

The difference is slight, and only matters if you're experienced with C++. (If you are experienced with C++: what is that difference? Here's a
hint.)

3 If you have a Nevis temporary account, the folder hierarchy may be puzzling to you; your home directory will be in /nevis/milne/files/
<account>. For now, don’t worry about this. If you’d like to know more, there’s the Nevis wiki automount page.

26 Chapter 3. The Basics

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Automount

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Fitting a histogram (15 minutes)

I created a file with a couple of histograms in it for you to play with. Switch to your UNIX window and copy this file
into your directory:'

> cp ~seligman/root-class/histogram.root $PWD

Go back to your TBrowser window. (If you’ve quit ROOT, just start it again and start a new browser.) Click on the
folder in the left-hand pane with the same name as your home directory.

Double-click on histogram.root. You can see that I've created two histograms with the names hist1 and hist2.
Double-click on hist1; you may have to move or switch windows around, or click on the Canvas 1 tab, to see the c1
canvas displayed.

Note: You can guess from the x-axis label that I created this histogram from a gaussian distribution, but what were the
parameters? In physics, to answer this question we typically perform a “fit” on the histogram: you assume a functional
form that depends on one or more parameters, and then try to find the value of those parameters that make the function
best fit the histogram.

Right-click on the histogram and select FitPanel. Under Fit Function, make sure that Predef-1D is selected. Then
make sure gaus is selected in the pop-up menu next to it, and Chi-square is selected in the Fit Settings->Method
pop-up menu. Click on Fit at the bottom of the panel. You’ll see two changes: A function is drawn on top of the
histogram, and the fit results are printed on the ROOT command window.”

Note: Interpreting fit results takes a bit of practice. Recall that a gaussian has 3 parameters (P, P;, and P»); these
are labeled “Constant”, “Mean”, and “Sigma” on the fit output. ROOT determined that the best value for the “Mean”
was 5.98£0.03, and the best value for the “Sigma” was 2.431+0.02. Compare this with the Mean and RMS printed in
the box on the upper right-hand corner of the histogram.

Statistics questions
Why are these values almost the same as the results from the fit?

Why aren’t they identical?

On the canvas, select Fit Parameters from the Options menu; you’ll see the fit parameters displayed on the plot.

Note: As a general rule, whenever you do a fit, you want to show the fit parameters on the plot. They give you some
idea if your “theory” (which is often some function) agrees with the “data” (the points on the plot).

L If you’re going through this class and you can’t login to a system on the Nevis particle-physics Linux cluster, you’ll have to get the files from
my web site.
If you want to get all the files from that directory at once, one way is to use this UNIX command:

wget -r -np -nH --cut-dirs=2 -R "index.html*" \
https://www.nevis.columbia.edu/~seligman/root-class/files/
You may have to install the wget command on your system, since it’s often not installed by default.
Be aware that in that directory there are a lot of work files I created to test things. There’s more in there than just the files I reference in my tutorials.
2 What do all these options mean? The Fit Function selects which mathematical function is going to be used to fit the histogram. Predef-1D

means that the function is going to come from one of ROOT’s pre-defined one-dimensional math functions; as you will learn in just a bit, you can
define functions of your own. Chi-square refers a fitting method; for any fit that you’re likely to do with a FitPanel, this will be the method you’ll
use.

. Walkthrough: Fitting a histogram (15 minutes) 27

https://www.nevis.columbia.edu/~seligman/root-class/files/

Nevis Labs ROOT tutorial, Release 22.0.2

300

250

200

150

100

50

Function to be fit

I[II[I|||TI|IIII|IIII|III]|

hist1
Entries 10000
Mean 6.041
RAMS 2397
% i ndt 95.78 /94
Constant 245.2= 3.1
Mean 5.984 + 0.025
Sigma 2434+ 0.018

12 14
Gaussian

Figure 3.6:: The resulting plot should look something like this.

ALALDNA0US

COEFRICIENT oF FRICTION
oF DESK CHAR

Figure 3.7:: http://xkcd.com/815 by Randall Munroe. It will look nothing like this. This would be a poor fit for your
function.

28

Chapter 3. The Basics

http://xkcd.com/815

Nevis Labs ROOT tutorial, Release 22.0.2

As a check, click on landau (which vaguely resembles the plot in Figure 3.7) on the FitPanel’s Fit Function pop-up
menu and click on Fit again; then try expo and fit again.

Note: You may have to click on the Fit button more than once for the button to “pick up” the click.

It looks like of these three choices (gaussian, landau, exponential), the gaussian is the best functional form for this
histogram. Take a look at the “Chi2 / ndf” value in the statistics box on the histogram (“Chi2 / ndf” is pronounced
“kye-squared per [number of] degrees of freedom”). Do the fits again and observe how this number changes. Typically,
you know you have a good fit if this ratio is about 1.°

The FitPanel is good for gaussian distributions and other simple fits. But for fitting large numbers of histograms (as
you’d do in the Advanced Exercises and the Expert Exercises) or for more complex functions, you’ll want to learn the
following ROOT commands.

To fit hist1 to a gaussian, type the following command:*

[1 histl->Fit("gaus")

This does the same thing as using the FitPanel. You can close the FitPanel; we won’t be using it anymore.

Go back to the browser window and double-click on hist2.

Note: You’ve probably already guessed by reading the x-axis label that I created this histogram from the sum of two
gaussian distributions. We’re going to fit this histogram by defining a custom function of our own.

Define a user function with the following command:

[1 TF1 func("mydoublegaus", "gaus(0)+gaus(3)")

Note: Note that the internal ROOT name of the function is “mydoublegaus”, but the name of the TF1 object is func.

What does gaus(0)+gaus(3) mean? You already know that the “gaus” function uses three parameters. gaus(0)
means to use the gaussian distribution starting with parameter 0; gaus(3) means to use the gaussian distribution

CLINY3

starting with parameter 3. This means our user function has six parameters: Fy, P;, and P, are the “constant”, “mean”,

CLINT3

and “sigma” of the first gaussian, and Ps3, Py, and P; are the “constant”, “mean”, and “sigma” of the second gaussian.

Let’s set the values of Py, Py, P», Ps, Py, and Ps, and fit the histogram.5

[func.SetParameters(5.,5.,1.,1.,10.,1.)
[1 hist2->Fit("mydoublegaus")

It’s not a very good fit, is it? This is because I deliberately picked a poor set of starting values. Let’s try a better set:

[] func.SetParameters(5.,2.,1.,1.,10.,1.)
[1 hist2->Fit("mydoublegaus")

3 If you’re not familiar with terms like “chi2” or “chi-squared” there’s a brief introduction to statistics in this tutorial.

4 What's the deal with the arrow “->” instead of the period? It’s because when you read in a histogram from a file, you get a pointer instead of an
object. This only matters in C++, not in Python. See the section on pointers for more information.

3 It may help to cut-and-paste the commands from here into your ROOT window.

Warning: For now, don’t fall into the trap of cutting-and-pasting every command from this tutorial into ROOT. Save it for the more compli-
cated commands like SetParameters or file names like ~seligman/root-class/AnalyzeVariables.C. You want to get the “feel” for issuing
commands interactively (perhaps with the tricks you've learned), and that won’t happen if you just type Ctrl-C/click/Ctrl-V over and over again.

When we get to The Notebook Server, you’ll start cutting-and-pasting commands into notebooks on a regular basis.

. Walkthrough: Fitting a histogram (15 minutes) 29

Nevis Labs ROOT tutorial, Release 22.0.2

Note: These simple fit examples may leave you with the impression that all histograms in physics are fit with gaussian
distributions. Nothing could be further from the truth. I’m using gaussians in this class because they have properties
(mean and width) that you can determine by eye.

Chapter 5 of the ROOT Users Guide has a lot more information on fitting histograms, and a more realistic example.

If you want to see how I created the file histogram.root, go to the UNIX window and type:

> less ~seligman/root-class/CreateHist.C

In general, for fitting histograms in a real analysis, you’ll have to define your own functions and fit to them directly,
with commands like:

[1 TF1 func("myFunction","<...some parameterized TFormula...>")
[func.SetParameters(...some values...)
[1 myHistogram->Fit("myFunction")

For a simple gaussian fit to a single histogram, you can always go back to using the FitPanel.

30 Chapter 3. The Basics

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Nevis Labs ROOT tutorial, Release 22.0.2

CURVE-FITTING METHODS

AND THE. MESSAGES THEY SEND
. *a :: . * . e - - . *
"HEY, I DDA "I UANTED A CURVED LOOK, ITS
REGRESSION. LINE, 50 T MADE ONE TAPERING OFF!"
UITH MATH”
. o ou e
LOOK, ITS GROVING *I™M SOPHISTICATED, NOT "M MAKING A
UNCONTROLLABLY™ LIKE THOSE BUMBLING SCATTER PLOT BUT
POLYNOMIAL PEOPLEY I DONT WANT TO!
j : ' b N . . /-;1::‘,‘
.t . ® 5__:_..—.-—'1""___ v " .
"I NEED TO CONNECT THESE ~ “UISTEN, SCENCE 1S HARD. “L HAVE A THEORY,
WO UNES, BUT MY FIRST IDEA BUT IM A SERIOUS AND THIS 15 THE ONLY

DIDN'T HAVE ENOUGH MATH® PERSON DOING MY BEST® DATA T COULD FIND? P

"I CLICKED "SMOOTH “T HAD AN IDEA FOR HOU "AS YOU CAN SEE, THIS

LINES IN EXCELY TO CLEAN UP THE DATA. MODEL SMOOTHLY FiTS
WHAT DO YOU THINK?® THE- LIAIT MO ND DONT
EXTEND IT ARARAAY"

Figure 3.8:: http://xkcd.com/2048 by Randall Munroe. Here are some possibilities for fitting plots using ROOT. If you
choose to read the discussion on statistics this cartoon may be funnier (or more tragic; such is the nature of physics).

. Walkthrough: Fitting a histogram (15 minutes) 31

http://xkcd.com/2048

Nevis Labs ROOT tutorial, Release 22.0.2

32

Chapter 3. The Basics

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Saving your work, part 2 (15 minutes)

Note: So now you’ve got a histogram fitted to a complicated function. You can use Save as cl.root, quit ROOT, restart
it, then load canvas “c1;1” from the file. You’d get your histogram back with the function superimposed... but it’s not
obvious where the function is or how to access it now.

What if you want to save your work in the same file as the histograms you just read in? You can do it, but not by using
the ROOT browser. The browser will open .root files in read-only mode. To be able to modify a file, you have to open
it with ROOT commands.

Try the following: Quit ROOT (note that you can select Quit ROOT from the Browser menu of the browser or the File
menu of the canvas). Start ROOT again, then modify “histogram.root” with the following commands:

[1 TFile filel("histogram.root","UPDATE")

It is the “UPDATE” option that will allow you to write new objects to “histogram.root”.

[1] hist2->Draw()

For the following two commands, hit the up-arrow key until you see them again.’

[1 TF1 func('user","gaus(0)+gaus(3)")
[] func.SetParameters(5.,2.,1.,1.,10.,1.)
[1 hist2->Fit("user™)

Now you can do what you couldn’t before: save objects into the ROOT file:

[] hist2->Write(Q)
[] func.Write(Q

Close the file to make sure you save your changes’:

[1 filel.Close()

Quit ROOT, start it again, and use the ROOT browser to open “histogram.root”. You’ll see a couple of new objects:
“hist2;2” and “user;1”. Double-click on each of them to see what you’ve saved.

Note: You wrote the function with func.Write(), but you saw user;1 in the file. Do you see why? It has to do
with the name you give to objects in your programming environment, versus the internal name that you give to ROOT.
There’s more about this later in the tutorial. 1 wanted to point it out so that you were aware that, though they seem
closely connected at times, the program environment and the ROOT toolkit are two different entities.

Chapter 11 of the ROOT Users Guide has more information on using ROOT files.

! In case you care: ROOT stores your ROOT commands in the file “.root-hist” in your home directory; that’s where it gets the lines you see with
the up-arrow key. Similarly, the UNIX shell stores the last 5000 commands you’ve typed in .sh-history in your home directory.

2 I've seen some ROOT documentation that suggests that closing the file is optional, since ROOT usually closes the file for you when you quit
the program. However, I've also seen many ROOT files made unreadable because they weren’t closed properly. I suggest you always explicitly close
any file you open!

. Walkthrough: Saving your work, part 2 (15 minutes) 33

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Nevis Labs ROOT tutorial, Release 22.0.2

Example experiment n-tuple (10 minutes)
I’ve created a sample ROOT n-tuple for you. Quit ROOT. Copy the example file:
> cp ~seligman/root-class/experiment.root $PWD

Start ROOT again. Start a new browser with the command

[] TBrowser b

Click on the folder in the left-hand pane with the same name as your home directory. Double-click on experiment.
root. There’s just one object inside: treel, a ROOT TTree (or n-tuple) with 100,000 simulated physics events.

Note: There’s no real physics associated with the contents of this n-tuple. I created it to illustrate ROOT concepts,
not to demonstrate physics with a real detector.

Right-click on the treel icon, and select Scan. You’ll be presented with a dialog box; just hit OK for now. Select your
ROOT window, even though the dialog box didn’t go away. At first you’ll notice that it’s a lot of numbers. Take a look
at near the top of the screen; you should see the names of the variables in this ROOT Tree.'

You can hit Enter to see more numbers, but you probably won’t learn much. Hit g to finish the scan. You may have to
hit Enter a couple of times to see the ROOT prompt again.

Note: Let’s break down this simple example:
* A particle is traveling in a positive direction along the z-axis with energy ebeam.
* It hits a target at z=0, and travels a distance zv before it is deflected by the material of the target.

» The particle’s new trajectory is represented by px, py, and pz, the final momenta in the x-, y-, and z-directions
respectively.

+ The variable chi2 (x?) represents a confidence level in the measurement of the particle’s momentum after de-
flection.

» The variable event is just the event number (0 for the first event, 1 for the second event, 2 for the third event. ..
99999 for the 100,000th event).

LIf the names “stutter” (e.g., you see px.px instead of just px), don’t be concerned.
The name of the package is ROOT, an n-tuple is a type of Tree, and the individual variables are “leaves” on the Tree. ROOT has “branches” as
well: if you remember that spreadsheet model I showed you during the lecture, branches correspond to entire columns.
In the scan, ROOT displays both the name of the branch and the name of the leaf within the branch. For an n-tuple, each branch only has one leaf,
but TTree::Scan() has no way of knowing that, so it displays everything.

34 Chapter 3. The Basics

Nevis Labs ROOT tutorial, Release 22.0.2

(pX,py,pz)
/

ebeam

le--mmmm-m - >
zZV

Figure 3.9:: Sketch of the experiment and variables.

Note: Did you notice what’s missing from the above description? Answer: units. I didn’t tell you whether zv is
in millimeters, centimeters, inches, yards, etc. Such information is not usually stored inside an n-tuple; you have to
find out what it is and include the units in the labels of the plots you create.” For this example, assume that zv is in
centimeters (cm), and all energies and momenta are in GeV.

There’s something else that’s missing, but you wouldn’t have noticed it unless you’ve performed a scientific analysis
before: time. Any real experiment would have several variables relating to time (the time of the event, the time that the
particle interacted in the detector, etc.) I haven’t included any time-related variables in this n-tuple, with the possible
exception of the event number, mainly because they wouldn’t illustrate what I want to teach you in this tutorial.

2 Advanced note: There is a way of storing comments about the contents of a ROOT tree, which can include information such as units. However,
you can’t do this with n-tuples; you have to create a C++ class that contains your information in the form of comments and use a ROOT “dictionary”
to include the additional information. This is outside the scope of what you’ll probably be asked to do this summer.

If you're interested in the concept, it’s described in Chapter 15 of the ROOT User’s Guide. There’s an example in the Expert Exercises.

. Example experiment n-tuple (10 minutes) 35

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Nevis Labs ROOT tutorial, Release 22.0.2

OF THE FOUR DIMENSIONS T
COULD HAVE SPENT MY LIFE
BEING PUSHED INEXORABLY
FORWARD THROUGH, T GUESS
"TIME”™ ISN'T THE \JORST.

/

| _'-_____—--"
wl
sk)
ke Ale -

Figure 3.10:: https://xkcd.com/1524/ by Randall Munroe

36

Chapter 3. The Basics

https://xkcd.com/1524/

Nevis Labs ROOT tutorial, Release 22.0.2

Using the Treeviewer!

Right-click the treel icon again and select StartViewer.

Note: You’re looking at the TreeViewer, a tool for making plots from n-tuples interactively. The TreeViewer is handy
for quick studies of n-tuples, but it’s almost certainly not enough to get you through the work you’ll have to do this
summer. Any serious analysis work will involve editing ROOT macros and writing C++ code or Python scripts.

Still, there are times when a simple tool can be useful. Let’s use the TreeViewer to examine the treel n-tuple. Once
you have an idea of what’s inside treel, you’ll be ready to start writing programs to analyze it.

You can figure out how to use the TreeViewer on your own; the Help menu in the right-hand corner of the TreeViewer
panel is genuinely useful. Here’s a quick guide to get you started.

In the second column of the large pane in the window, you’ll see the variables in the n-tuple; they all have a “leaf” icon
next to them. Double-click on one of them and look the resulting histogram. Double-click on a few more variables and
see how the histogram changes.

| NON) \| TreeViewer
File Edit Run Options Help
Command | Option | Histogram [htemp [~ Hist [~ Scan [Rec
Current Falder Current Tree : treel
ﬁ__ﬂ Treelist X ~ebeam * event

[RN v El Reven
i Z: -empty- ipx
- “h-empty- Fypy
: % scan box 2
" MEo-empty- Ryav
: &< -empty- R chi2
N B¢ -empty-

: E¢) -empty-

: o -empty-

> , EC) -empty-

= E<y -empty-

: E<) -empty-

: E<) -empty-

k ¢ -empty-

(T T T T S T JONA St TS TS TSN SO TSt TR T TR [CONY TSN SO TR SO N NN S NN O TN SO TN SO TR T IO |

0%

13| seioer| @] &
IListl OList| [Cnntent:zv m HESE"’_!__‘

Figure 3.11:: This is what I see when I run TreeViewer on my Macintosh.

! Tf you feel that this course has been too easy so far, you can skip the TreeViewer. It’s trivial to learn on your own if you want to. If you already
know about cuts and scatterplots, skip ahead to The Notebook Server.

. Using the Treeviewer' 37

Nevis Labs ROOT tutorial, Release 22.0.2

Correlating variables: scatterplots (10 minutes)

Left-click on a variable and hold the mouse down. Drag the variable next to the blue curly X in the first column, over
the word -empty-, and let go of the button. Now select a different variable and drag it over next to the curly Y. Click
on the scatterplot icon in the lower left-hand corner of the TreeViewer (it’s next to a button labeled SPIDER?).

Note: This is a scatterplot, a handy way of observing the correlations between two variables. Be careful: it’s easy
to fall into the trap of thinking that each (x,y) point on a scatterplot represents two values in your n-tuple. In fact, the
scatterplot is a grid and each square in the grid is randomly populated with a density of dots that’s proportional to the
number of values in that grid.

Drag different pairs of variables to the X and Y boxes and look at the scatterplots. Do you see any correlations between
the variables?

Note: If you just see a shapeless blob on the scatterplot, the variables are likely to be uncorrelated; for example, plot
px versus py. If you see a pattern, there may be a correlation; for example, plot pz versus zv. It appears that the higher
pz is, the lower zv is. Perhaps the particle loses energy before it is deflected in the target.

zv:ebeam

120

100

80

G0

40

20

I | L.‘?':ﬁ
148.2 149.4 1496

abaam

Figure 3.12:: This is what I see when I make a scatterplot of zv versus ebeam. The variables look uncorrelated to me,
subject to the restriction that we can’t have zv < 0.

2 Go ahead and click on the SPIDER button if you want. A spider (or radar) chart is a way of displaying multivariant data in a two-dimensional
graph.
I’ve never seen spider charts used in physics, except when I looked up the definition for this tutorial. By the way, if you clicked that link, you just
looked up spider charts on the web. (OK, I'm no Randall Munroe.)

38 Chapter 3. The Basics

https://www.fusioncharts.com/resources/chart-primers/radar-chart

Nevis Labs ROOT tutorial, Release 22.0.2

New variables: expressions (10 minutes)

Note: There are other quantities that we may be interested in apart from the ones already present in the n-tuple. One

such quantity is pr which is defined by:
pr =\/P3 + D

This is the transverse momentum of the particle, that is, the component of the particle’s momentum that’s perpendicular
to the z-axis.

You can use TreeViewer to create expressions that are functions of the variables in the tree. Double-click on one the E()
icons that has the word -empty- next to it. In the dialog box, type sqrt (px*px+py*py) in the box under Expression,
and type ~pt? in the box under Alias. Then click on Done. Now double-click on the word ~pt in the TreeViewer.

Tip: When you're typing in the expression, you don’t have to type the name of any variable in the tree. You can just
click on the name in the TreeViewer.

The quantity theta, or the angle that the beam makes with the z-axis, is calculated by:

6 = arctan <pT)
Dz

The units are radians. Let’s create a new expression to calculate theta. Double-click on a different E() icon with
-empty- next to it. Type atan2(~pt,pz) under Expression, and ~theta under Alias. Click Done, then double-
click on ~theta.*

Note: After an expression is no longer empty, you can’t double-click on it to edit it; that will just cause the expression
to be plotted. To edit an existing expression, right-click on it and select EditExpression.

You can have expressions within expressions (such as ~pt in the definition of ~theta). All expressions that you create
must have names that begin with a tilde (~), and the expression editor will enforce this. A common error is to forget
the tilde when you’re typing an expression; that’s the reason why it can be a good idea to insert a variable or an alias
into an expression by clicking on it in the TreeViewer.

Restricting values: cuts (10 minutes)

Let’s create a “cut” (a limit on the range of a variable to be plotted). Edit another empty expression and give it the
formula zv < 20 and the alias zcut.

Note: Note how the icon changes in the TreeViewer. ROOT recognizes that you’ve typed a logical expression instead
of a calculation.

Drag ~zcut to the scissor icon. Double-click on zv to plot it. Double-click on some of the other variables and look at
both the histogram title and the Nent in the statistics box of the histograms; the z-cut affects all the plots, not just the
plot of zv.

Double-click on the scissor icon to turn off the cut; note the change in the scissor icon. Double-click on the icon again
to turn the cut back on.

3 That first character is a tilde (~), not a dash.
4 The reason to use atan2 (y,x) instead of just atan(y/x) is that the atan2 function correctly handles the case when x=0.

Using the Treeviewer": 7! 39

Nevis Labs ROOT tutorial, Release 22.0.2

Now edit ~zcut by right-clicking on it and selecting EditExpression. Edit the expression to read zv<20 && zv>10
and click Done. Plot zv. Has the cut changed? Now drag ~zcut to the scissors and plot zv again.’

atan2(sqri(px*px+py*pyl.pz) {zv<20 && zv = 10}

htermp
= Eniries 23177
800 = Mean 0.03895
- RS 0.03015
TOo —
800 —
500 —
400 —
300 —
200 —
100 —
{I:IIIIIIIIIIIIIIIIIIIIIIIIIII —l—l-I_LI_LII_III
0 D02 004 006 008 01 2 012 014 016 018 02 022
theta

Figure 3.13:: This is what I see when I make a plot of theta with the cut zv<20 && zv>10.

If you wanted to display this plot in a talk, you’d have to label both axes (which you’ve already learned how to do) and
do something about that title. It’s not clear how to fix the title of a plot from TreeViewer; if you right-click on it you
see that it’s a TPaveText with a number of options that don’t seem to do what you want.

I figured this out by saving the plot as c1.C, examining that file, and looking up TPaveText on the ROOT web site.
The simplest way to edit the title is right-click on it, select Clear, then select InsertText and type in your new title.

THERE 15 NOGOD. OUR
EXISTENCE 1S WITHOUT PURPOSE

EXACTLY! IN THE END,
NOTHING WE DO MATTERS,

N Y
BECAVSE THE FUTURE 1S '

OH, DERNITELY.

ARE ADRIFT
IN AN UNCARING
VOID |NDIFFERENT
TO ALLOUR,
MORTAL TOIL.

WHY ARE YOU SQUIBRELS!

CLIMBING
THAT TREE?

Figure 3.14:: https://xkcd.com/167/ by Randall Munroe. That’s why we climb (analyze) TTrees: the future is an
adventure, and you don’t know what you’ll find. And perhaps the first speaker is wrong in other ways.

3 For those who know what a “weighted histogram” means: A “cut” is actually a weight ROOT applies when filling a histogram; a logical
expression has the value 1 if true and the value 0 if false. If you want to fill a histogram with weighted values, use an expression for the cut that
corresponds to the weight.

For example: a cut of 1/e will fill a histogram with each event weighted by 1/e; a cut of (1/e)*(sqrt(z)>3.2) will fill a histogram with events
weighted by 1/e, for those events with sqrt(z) greater than 3.2.

40 Chapter 3. The Basics

https://xkcd.com/167/

CHAPTER
FOUR

THE NOTEBOOK SERVER

If you’re familiar with Jupyter or IPython, you can skim or skip this part.

Now I’'m going to introduce a different software development tool, the notebook. It’s independent of ROOT, but it can
be handy for creating ROOT programs.

41

Nevis Labs ROOT tutorial, Release 22.0.2

Starting with Jupyter (5 minutes)

In any web browser (laptop, desktop, tablet), go to https://notebook.nevis.columbia.edu.! You’ll be prompted for your
Nevis account name (just the name, no “@”) and password.”

When you visit notebook for the first time, you’ll see the Jupyter “home” window with the files in your home directory.
You can perform elementary file operations from this screen: check the box next to a filename, and you’ll see an option
near the top of the screen to rename or delete the file. The Upload button near the top left allows you to copy files from
your laptop to the Nevis cluster.

The fun part is in the pop-up menu you get from clicking the “New” button near the top left:

» Text File will give you a basic text editor. You will also get a text editor if you click on a text file on the home
directory page. The Edit menu within the editor page will let you select which text editor you use; you know my
Javorite editor is Emacs, but you can use whatever you wish.

* Folder lets you create a new sub-directory.
» Terminal will give you access to a limited (but still useful) terminal emulator.
¢ And then we have the notebook kernels. ..

In Jupyter, a “kernel” is an environment for interpreting commands. I installed lots of kernels on the notebook server for
users to explore, but for this tutorial there are only two of interest: “Python 3” (which includes an interface to ROOT)?
and “ROOT C++".

[GIR’LSGOWCDLLEGE] [Bo¥S GOTOCOUEGE]| | [GIRLS AND BOYS

R
I’(I%M'LEWE

ﬂ%%ﬁ%ﬂ

Figure 4.1:: https://xkcd.com/1202/ by Randall Munroe

! Take care: it’s “https”, not just “http”.

2 If you don’t have an active account on the Nevis particle-physics cluster, then you won’t be able to login. You’ll have to install Jupyter on your
own system or proceed without it; go on to the next section.

3 Check with your working group. They may still use Python 2.

42 Chapter 4. The Notebook Server

https://notebook.nevis.columbia.edu
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/JupyterTerminal
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
https://xkcd.com/1202/

Nevis Labs ROOT tutorial, Release 22.0.2

Your first notebook (10 minutes)

From the New menu, select Python 3. You’ll see your first empty cell, labeled In [1]. At the top of the page, you’ll
see that the name of the notebook is Untitled. The first thing you should do when creating a new notebook is to give
it a new name. Go to the File menu within the Jupyter page and select Rename.... Pick any name you wish, such as
pythontest.'

FOTTOTCES (98, 00K

Untitled 241.doc (

Untitled 138 copy.docx

Untitled 138 copy 2. doc

Untitled 139. docx

Untitled 40 MOM ADDRESS Jpg

Untitled 242.doc

Untitled 243.doc

Untitled ﬁtﬁ IMPORTANT. doc
[~

4

OH MY oal

9l

PROTIP: NEVER LOOK, IN SOMEONE.
ELSE’s DOCUMENTS FDLDER.

Figure 4.2:: https://xkcd.com/1459/ by Randall Munroe

After you’ve renamed the notebook, go back to the Jupyter Home window. You’ll see the notebook file with the
extension .ipynb.

Go back to the notebook window. Under the Help menu, take the User Interface Tour (it’s about a minute long). Note
the Keyboard Shortcuts.”

Cut-and-paste the following into that first cell.®

! You don’t have to do this. But if you don’t, your home directory will soon be littered with notebooks named Untitled.ipynb, Untitled1.ipynb,
Untitled2.ipynb, etc., and you won’t know what’s in any of them.

2 Here are more Jupyter hints. Some of those tips won’t work on the Nevis systems; e.g., you can’t install new packages on the Nevis notebook
server. The last tip, on different ways to share notebooks, will be helpful to those who work with folks who don’t use Jupyter.

3 You can type it in manually if you want, but (a) that’s a lot of typing, and (b) you have to make sure you get each character correct for the sake
of this example.

. Your first notebook (10 minutes) 43

https://xkcd.com/1459/
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/

Nevis Labs ROOT tutorial, Release 22.0.2

from ROOT import TH1D, TCanvas

my_canvas = TCanvas('"mycanvas","canvas title",800,600)
example = TH1D("example","example histogram",100,-3,3)
example.FillRandom("gaus", 10000)

exomple.Draw("E")

my_canvas.Draw()

Note: This code is in Python, but after going through 7he Basics you can probably figure out what most of these lines
are supposed to do.

To “execute” the contents of a given cell, hit SHIFT-ENTER with your cursor in that cell. Do that now.
Oops! There’s an error. Fix the error in the cell and hit SHIFT-ENTER again.

Note: Assuming there have been no mistakes, you should see a histogram embedded in the web page.

There are also a couple of warning messages:

Warning in <TCanvas::Constructor>: Deleting canvas with same name: mycanvas
Warning in <TROOT: :Append>: Replacing existing TH1: example (Potential memory leak).

Let’s think about what those messages mean. When you execute lines in a cell, your environment doesn’t “start fresh”;
everything you defined before is still there. ROOT is warning you that the TCanvas and the histogram are being
overridden.

In Python, you can usually ignore these warnings.

Click in the next cell and cut-and-paste this line, then hit SHIFT-ENTER:

exampleFit = example.Fit("gaus")

Note: This next cell recognizes the histogram object you defined in the previous cell. This gives you some idea of one
feature of notebooks: You can fiddle with something in a given cell until it does what you want, then move on to the
next phase of your task that depends on the previous cell.

Wait a moment... We just added a fit to the histogram, but the plot didn’t change. Maybe we have to plot it again.

Enter this line after the one you just pasted, or into a subsequent cell, and hit SHIFT-ENTER:

example.Draw()

Note: No new plot, and the plot above it still didn’t change. What’s wrong? Nothing. Jupyter runs in a web browser,
and browsers behave differently than X-Windows (the underlying graphics protocol of UNIX). You may have noticed
that, unlike the ROOT plots in The Basics, the shape of the cursor doesn’t change as you move it over the plot, and
right-clicking on it brings up a browser menu, not a ROOT one. If you right-click on the plot and select View Image,
you’ll see that the plot is not a dynamic object, but a static .png file.*

How do we get a plot? You probably guessed the answer from what I had in the first cell. Paste the following line after
that last Draw() command, or in a new cell:

4 “PNG” stands for Portable Network Graphics. It’s a standardized format for uncompressed images to be sent over the web. Jupyter uses that
format instead of GIF because the GIF algorithm is patented.

44 Chapter 4. The Notebook Server

Nevis Labs ROOT tutorial, Release 22.0.2

my_canvas.Draw()

Finally, you see the histogram with the fit superimposed.

Remember: ROOT plots everything in a canvas. In Jupyter, a TCanvas is not automatically drawn when its underlying
plot updates. You have to explicitly draw the TCanvas yourself. That’s why the first example contains the lines:

my_canvas = TCanvas("mycanvas","canvas title",800,600)
... stuff ...
my_canvas.Draw()

I had to define the TCanvas that would be used as the “target” of any Draw commands, then Draw that TCanvas in
order for the plot to be displayed.’

5 Since we haven’t had to explicitly define our canvases before, I should mention: the canvas name and title are usually not important; the name
only matters if you were to write the canvas to a file, and the canvas title is rarely displayed (as opposed to the histogram title, which appears at the
top of the plot).

What matters is the size of the canvas. Here, I used 800 pixels wide and 600 pixels tall, which is the size of our old friend c1 that’s automatically
defined if you don’t define a canvas yourself.
I could have defined the canvas using only defaults with

my_canvas = TCanvas()

but I thought that might be even more confusing to see for the first time.

. Your first notebook (10 minutes) 45

Nevis Labs ROOT tutorial, Release 22.0.2

Magic commands (5 minutes)

Note: In Jupyter, “magic” refers to additional commands added by Jupyter to the kernel environment that aren’t
normally part of that kernel’s language.! I'm going to start with a slightly exotic magic command because I think
you’ll find it useful.

In a new cell in the Python notebook we just worked with, execute this command:2

%jsroot on

Note: As a general rule, magic commands begin with the percent sign “%”.

Draw the canvas again:

my_canvas.Draw()

Move the cursor over the new plot.

Note: Ah, that’s more like it! The plot is not interactive in the same way as in X-Windows ROOT, but you can get a
lot done. Play around a bit, looking at tooltips and right-clicking. Note the faint icons below the lower left-hand corner
of the plot.

If you execute %lsmagic you’ll see a list of available magic commands. There’s probably more here than you can
absorb right now.* Here are examples of the magic commands I find to be the most useful:

%mkdir subdirectory

%cp ~seligman/root-class/jsroot-test.ipynb subdirectory
%ls subdirectory

%less cl1.C

%man root

%cd subdirectory

The above commands are “line magics,” which are executed line-by-line within a cell. There are also “cell magics”
that affect the contents of the entire cell in which they appear; they must appear as the first line in a cell. They begin
with a double “%”. Examples:

o %%writefile (write the cell to file);
* %%timeit (execute the cell many times and determine the average execution time);

* %%sh (execute the cell as a UNIX shell script).

! No, nothing to do with Doctor Strange or Gandalf, though you may find yourself muttering “You shall not pass!” as you work with ROOT.
2 Note that the %jsroot magic command is only available in Python-based notebooks after you’ve executed import ROOT or from ROOT
import. .. In ROOT C++ notebooks it’s built-in.
“JSROOT” is short for “Javascript ROOT”; it’s an evolving project to bring more interactivity of ROOT graphics into web browsers.
3 Well.... not really. There’s an option (%automagic on|off) that allows you to omit the leading %. In this tutorial I'Il always include the %
prefix to make it clear when a command is “magic”.
4 Here are more details about magic commands.

46 Chapter 4. The Notebook Server

https://github.com/root-project/jsroot/blob/master/docs/JSROOT.md
https://ipython.readthedocs.io/en/stable/interactive/magics.html

Nevis Labs ROOT tutorial, Release 22.0.2

Markdown cells (5 minutes)

Note: One of the hardest habits to get into is documenting your work. Jupyter makes it easy.

Click in an empty cell. Go to the pop-up menu near the top of the page that reads Code. Select Markdown from that
menu. Now you can type plain text in that cell; e.g., “The following code sums all the histograms in the analysis.”
When you’re done, hit SHIFT-ENTER to see the formatted result.

You can also include Markdown,' HTML,2 and LaTeX"> commands to format the text. Here are some examples: declare
a cell to be Markdown, paste one of the following paragraphs into the cell, and hit SHIFT-ENTER:

Markdown
2025 Analysis Project

Energy, **time**, and ‘momentum are all variables in this
n-tuple.

HTML

<h1>2019 Analysis Project</hl>

<p><i>Energy</i>, time, and
<tt>momentum</tt>.</p>

<p>The following code reads in an n-tuple.</p>

LaTeX
begin{align}
nabla times vec{mathbf{B}} -, fraclc,

frac{partialvec{mathbf{E}}}{partial t} &
frac{4pi}{c}vec{mathbf{j}}

nabla cdot vec{mathbf{E}} & = 4 pi rho

nabla times vec{mathbf{E}}, +, fraclc,
frac{partialvec{mathbf{B}}}{partial t} &

vec{mathbf{0}}

(continues on next page)

! Markdown is a simple text-layout layout that emphasizes readability over the methods described in the next two footnotes. Here is a pretty good
Markdown tutorial.
Though I tend to prefer HTML (see the next footnote), in 2022 I composed most of this tutorial using Markdown, because it was easier to translate
from the original Microsoft Word document.
2 HTML (“HyperText Markup Language”) is the standard language for formatting content in web browsers. If you’ve never seen it before, it’s
because you’ve used some program that formats web pages for you into HTML (Markdown is one such program). Here’s my favorite HTML tutorial.
If you want a couple of xked cartoons on HTML: https://xkcd.com/1341/ and https://xkcd.com/1144/.
3 LaTeX is a document-preparation package that’s often used in research. If you write a paper for publication this summer, you are going to use
LaTeX; physics publications don’t accept articles in MS-Office or Google Docs format.
Don’t worry about learning LaTeX. Most people don’t write a LaTeX document from scratch; they get one from someone and learn by example.
It’s much easier than learning ROOT. Here are some Jupyter-related examples.
You can spend a lifetime learning LaTeX, but almost no one ever has. I certainly have not, which is why the PDF version of this tutorial looks
sloppy.

. Markdown cells (5 minutes) 47

https://help.github.com/articles/basic-writing-and-formatting-syntax/
https://www.w3schools.com/html/
https://xkcd.com/1341/
https://xkcd.com/1144/
https://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Typesetting%20Equations.html

Nevis Labs ROOT tutorial, Release 22.0.2

(continued from previous page)

nabla cdot vec{mathbf{B}} & = 0
end{align}

Can you mix all of them in a single Markdown cell? Give it a try!

48 Chapter 4. The Notebook Server

Nevis Labs ROOT tutorial, Release 22.0.2

The ROOT C++ kernel (5 minutes)

Note: In The Basics, all of the practice ROOT code used C++ syntax. Yet I switched to Python when I introduced
Jupyter. Now you’ll understand why.

Start a ROOT C++ notebook (either from your Jupyter home page, or from the File menu of your existing notebook).
Rename it to cplusplustest or whatever you want. Paste the following into a cell and execute it.

THID example("example","example histogram",100,-3,3);
example.FillRandom('"gaus", 10000) ;
example.Draw();

You won’t see anything, but after the Your first notebook discussion you know why: you have to draw the canvas. The
warning message says it drew the plot on TCanvas cl, so add the following line to the end of the above cell and hit
SHIFT-ENTER:

cl.Draw();

Note: I'm being sneaky, aren’t I? I knew cl.Draw() would not work. The error message tells you why: the
automatically-created c1 is a pointer, and requires the -> symbol.

Edit the “.” to the pointer symbol “->” and hit SHIFT-ENTER.

Note: If you think about it for a second, I could have given you a more complete example, the same way I did for the
Python notebook:

TCanvas my_canvas();

THID example("example","example histogram",100,-3,3);
example.FillRandom("gaus", 10000) ;

example.Draw();

my_canvas.Draw() ;
I presented it this way to make a couple of points. First, I wanted to remind you that in a C++ notebook you still have
to keep track of what’s an object and what’s a pointer.

Second, I wanted you to see the warning messages ROOT generates when you redefine objects or pointers that you’ve
created before. You can get away with this in interactive ROOT notebooks, as long as the redefinitions are in different
cells or you’re executing the same cell again. You cannot do this in stand-alone ROOT programs; the C++ specification
prohibits redefining variables with the same name.

Don’t let this confuse you; the following is fine:

int a = 1;
a = 2;

What'’s not allowed in full-fledged stand-alone C++ is:

int a = 1;
double a = 2.0;

The following will be allowed (with a warning) in a C++ ROOT notebook, as long as the two statements are in different
cells. You will get a compilation error in a stand-alone C++ program or if both statements are in the same cell in a

. The ROOT C++ kernel (5 minutes) 49

Nevis Labs ROOT tutorial, Release 22.0.2

notebook:

TH1D example("example","example histogram",100,-3,3);
THID example("example2","another example histogram",100,-3,3);

50 Chapter 4. The Notebook Server

CHAPTER
FIVE

DECISIONS

If you’ve already made up your mind about the questions posed in the section headers, you can skip or skim this section.

51

Nevis Labs ROOT tutorial, Release 22.0.2

C++ or Python?

Up until this point, the commands for ROOT/C++ and Python/ROOT were nearly identical.' I presented them in the
context of using cling, ROOT’s C++ environment.

From this point forward, using ROOT/C++ is different from using Python with ROOT extensions (“pyroot”). You have
to decide: in which language do you want to use ROOT? My initial advice is to ask your supervisor. Their response,
in ascending order of likelihood, will be:

* A clear decision (C++ or Python).
e “Idon’t know. Which do you feel like learning?”
* “T have no idea what you’re talking about.”
If it’s up to you, this may help you decide:?
In favor of Python:
* Learning Python is easier and faster than learning C++.

 Python can be more appropriate for “quick-and-dirty” analysis efforts, if that’s the kind of work you’ll be doing
this summer.

In favor of C++:

¢ All of the ROOT documentation, the Advanced Exercises, the Expert Exercises of this tutorial, and most of the
tutorials included with ROOT are in C++.

* If you’re going to be working with your experiment’s analysis framework, it will almost certainly involve working
in C++.

 C++ code, when compiled, is faster than Python (see this discussion).?

! See here for the differences when using Python versus ROOT/C++.
2 Here are the areas in which neither has a clear advantage:

* Both C++ and Python are used worldwide, so knowing either one is useful.

» Python’s interactive development is usually cited as an advantage over C++, but ROOT offers the interactive C++ interpreter, cling.

* Both languages have substantive numerical computing libraries (e.g., SciPy in Python, GSL in C++).

* Rivals to C++ and Python include (respectively) the Julia programming language and the Ruby scripting language. As far as I know none of

the particle-physics groups connected with Nevis use them.

3 There are various tricks for making Python run faster; e.g., the %opypy cell magic, the Cython extension, list comprehensions, clever use of
numpy. You’ll learn about them if you choose to become a Python expert.

52 Chapter 5. Decisions

https://julialang.org/
https://en.wikipedia.org/wiki/Ruby_(programming_language)

Nevis Labs ROOT tutorial, Release 22.0.2

Command-line or notebook?

Once you’ve decided on the language, you next have to decide on your programming environment: the command line
as in The Basics, or the notebook as in 7he Notebook Server.

In favor of notebooks
* They facilitate rapid code development. You fiddle inside a cell, hit SHIFT-ENTER to execute it, get it to do
what you want. Then you move to the next cell.
* Documentation is easy, as shown /ere.

* Notebooks are easy to share. For example, a colleague of yours can copy one of your notebooks to their own
area to look at it:

%cp ~jsmith/energy-calibration/myanalysis.ipynb jsmith-analysis.ipynb

* The interface to a notebook is through a web browser. You don’t need ssh or an X-Windows emulator.

Against notebooks

¢ They’re relatively new in software development. It’s possible your supervisor has never heard of them. If you
say you’ve got a .png plot in a Jupyter notebook, they’ll reply “You’ve got a what in a where?”

* The %jsroot on magic command does not enable every X-Window feature available from within the ROOT
command line. There’s no TBrowser, Treeviewer, or FitPanel. You can’t add new elements to a plot and then
save the ROOT commands so you can examine how to use them in a .C file.!

* As you saw in the examples above, your canvases are not automatically drawn or updated for you. You must
explicitly issue Draw() commands for your canvases.

Issues with the Nevis notebook server

Most of these points involve technical sysadmin issues. You may want to skip them, and come back later if you have a
notebook problem.

* The Nevis particle-physics JupyterHub notebook server is not something you find at most institutions, at least not
for now. Only the REU students and the particle-physics groups have access to it. Your astrophysics or RARAF
colleagues won’t be able to view your notebooks. You can install Jupyter on your laptop, but that won’t help
anyone else see your work.

* You can develop software in notebooks, but you can’t run multi-threaded or multi-hour jobs with them on our
notebook server.”

* Some physics software is a “chimera”, a blend of software compiled in two languages. For example, the Neutrino
Deep Learning group uses Python to call pre-compiled C++ routines. Our notebook server may not be able to
run software that’s been compiled on another machine.’

' Oops, I just lied to you. If you’ve drawn something to my_canvas, you can write its associated ROOT commands to a file with

my_canvas.SaveSource("filename.C");

where filename.C can be any name you want. Don’t forget to use -> if your canvas variable is a C++ pointer instead of an object!
2 The way to handle such tasks is with a batch system. This is one of the optional topics associated with this course.
3 1 doubt this will be important to your work this summer, but so you can look it up if necessary: In 2022, most of the particle-physics systems
are running CentOS 7.

. Command-line or notebook? 53

Nevis Labs ROOT tutorial, Release 22.0.2

* Asyou get more familiar with the UNIX shell, you may start making changes to your standard shell setup. You do
this by editing special shell initialization files such as .profile.* If you add new variables to your environment,
these variables are available in our notebook server as well.’

However, if you modify certain variables such as $LD_LIBRARY_PATH or run environment-customization scripts
(such as module load root) in your default initialization, it can affect the execution of the notebook server.
The typical symptoms are a notebook kernel that refuses to start or you get library load errors.

You can get around many of these issues by running Jupyter on your Nevis workgroup server.

4 Here’s a list of shell initialization files, at least for the systems at Nevis.

A UNIX survival tip: Never let a well-meaning friend start editing your shell initialization scripts for you. I can’t count the number of times I've
looked at someone’s shell init scripts and saw they were last edited in the 1990s. A user had either forgotten or never knew that their friend had put
any such commands there, and so never kept them updated in the years since. These init scripts were copied from user to user for decades.

If you edit your scripts yourself, at least you have a chance to maintain them.

5 For reference:
If you define a variable in a shell, e.g.,

export mywork=~/analysis_work_directory

then you can access the variable within your program in ROOT C++:
TString my_location = gSystem->Getenv("mywork");

In Python:

import os
my_location = os.environ["mywork"]

54 Chapter 5. Decisions

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Shell

Nevis Labs ROOT tutorial, Release 22.0.2

Diagonalizing the 2x2 decision matrix

It’s probably occurred to you that I’ve left you with four choices:

Command-line Notebook
ROOT C++ ROOT C++
Python with ROOT | Python with ROOT

This tutorial is already too long, and I’ve taken longer than I should have to offer you too many options. For simplicity,
I’ve chosen to present ROOT C++ on the command line in 7he C++ Path, and Python with ROOT in a Jupyter notebook
in The Python Path.

If you choose to pursue one of the “off-diagonal” choices, you won’t have much trouble following The C++ Path or
The Python Path. You were previously introduced to ROOT C++ in a notebook. To run Python with ROOT on the
command line (including magic commands), the following will set you up on a Nevis particle-physics system:

> module load root
> ipython

The C++ Path and The Python Path present the same commands, exercises, and footnotes.! Pick which language you
want to learn and go there.

You might even be able to do both of these parts; once you’ve mastered C++, Python is pretty easy!

s 0" sn0 | | 1,

_sin 0" cos 90° o ==

Figure 5.1:: https://xkcd.com/184/ by Randall Munroe

! The xked cartoons in the two parts are different, to give you an incentive to skim both.

. Diagonalizing the 2x2 decision matrix 55

https://xkcd.com/184/

Nevis Labs ROOT tutorial, Release 22.0.2

56

Chapter 5. Decisions

CHAPTER
SIX

THE C++ PATH

Congratulations on choosing to work with C++. It’s obviously better than the The Python Path.'

There are a lot of topics listed below. Don’t let that discourage you. Many of the sections below are quite short.” Again,
the important thing is for you to learn something from doing what exercises you can in the time we have.

! For one thing, the xkcd cartoons are funnier.
2 Many of the sections don’t have any footnotes or cartoons at all, just to make them shorter.

57

Nevis Labs ROOT tutorial, Release 22.0.2

Differences between C++ and Python

Many of the Nevis summer students have some previous experience with Python, but not with C++. Here’s a quick
overview of the differences to get you started. Pay attention to the prompts; they tell you whether the example is in
ROOT/C++ or Python.

* C++ statements end with a semi-colon. Python statements end with a RETURN; no semi-colons.

In [] myhist.FillRandom("gaus", 10000)
In [] myhist.Fit("gaus")

[1 myhist.FillRandom("gaus",10000); myhist.Fit('"gaus");

 Python control structures are defined by indentations. The indentation is mandatory; ending (or increasing) the
indentation is the same as ending (or nesting) the structure. This means that when you start working with pyroot
scripts, you must be careful with the TAB and SPACE keys. Note the colon at the end of the for statement;
colons are also needed at the end of if statements:

for jentry in xrange(entries):
get the next tree in the chain and verify
ientry = mychain.LoadTree(jentry)
More stuff

print ("The loop is over")

C++ control structures (e.g., if statements, loops) are indicated by curly braces ({}).! Any indentation is for the
convenience of humans; the compiler doesn’t need it:

for (Int_t jentry=0; jentry<nentries; jentry++) {
Int_t ientry = LoadTree(jentry);
// More stuff

}

std::cout << "The loop is over" << std::endl;

e C++ uses pointers, and ROOT makes liberal use of them in the code it generates for you (in .C files, etc.). Python

[T

does not use pointers, which means you don’t have to remember whether to use “.” or “->"":

In [] hist = ROOT.THID("example","my second histogram",100,-3,3)
In [] hist.FillRandom("gaus")

[1 TH1* hist = new TH1D("example","my second histogram",100,-3,3);
[1 hist->FillRandom("gaus");

* You have might picked up on this from the examples above: C++ has strict rules about types, and expects you
to specify them when you create a new variable.” Python determines types dynamically, and you rarely have to
specify them:

! I’m simplifying here. All the code in this course you’ve have seen so far use curly braces. I don’t want to confuse you any further (except for
this footnote).
2 Since I hate to lie to you, I should mention the C++ auto keyword, which lets C++ determine the type for you. Both of the following are correct:

TH1D* hist = new THID("hist","title",100,-3,3);

auto hist = new THID("hist","title",100,-3,3);

This can be a great timesaver if a C++ function returns something with a type like std::vector<std::pair<int,
double>>::const_iterator. However, you have to be comfortable with C++ before using it, which is why I’'m relegating this C++ tip
to a footnote.

How comfortable with C++ do you have to be before you can use auto? Enough so that you understand why both of the above lines are not the
best choice. A better choice would be:

58 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

In [] x = 2%3
In [] yae = ROOT.THID("test4","yet another example",b200,-100,100)

[] Double_t x = 2 * 3;
[] THID yae = THID("test4","yet another example",200,-100,100);

e The ROOT C++ interpreter, cling, knows the names of all the ROOT classes. You can type the following directly
into interactive ROOT without anything that resembles Python’s import statement:

[] THID* example4 = new THID("example4","my fourth histogram",100,-3,3);
[1 example4->Draw();

However, if you write a stand-alone program in C++, you have need a #include for the header of any class that’s
not part of the standard C++ specification:’

#include <TH1D.h>
TH1D* example4 = new TH1D("example4","my fourth histogram",100,-3,3);
example4->FillRandom('"gaus", 10000) ;

auto hist = std::make_shared<TH1D>("hist","title",100,-3,3);

Now you know why it takes a lifetime to learn C++!
3 This is crucial if you decide to work on Exercise 11.

. Differences between C++ and Python 59

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Walkthrough: Simple analysis using the Draw command (10
minutes)

Note: It may be that all the analysis tasks that your supervisor will ask you to do can be performed using the tools
you learned about in The Basics: the Draw command, the Treeviewer, the FitPanel, and other simple techniques
discussed in the early chapters of the ROOT Users Guide.

However, it’s more likely that these simple commands will only be useful when you get started; for example, you can
draw a histogram of just one variable to see what the histogram limits might be in C++. Let’s start with the same tasks
you did with Treeviewer.!

If you didn’t copy the example n-tuple file, do so now:

> cp ~seligman/root-class/experiment.root $PWD

If you don’t already have the sample ROOT TTree file open, open it with the following command:

[] TFile myFile("experiment.root")

You can use the Scan command to look at the contents of the tree, instead of using the TBrowser:

[] treel->Scan()

Note: If you take a moment to think about it (a habit I strongly encourage), you may ask how ROOT knows that there’s
a variable named treel, when you didn’t type a command to create it.

The answer is that when you read a file containing ROOT objects (remember the second part of Saving your work?) in
an interactive ROOT session, ROOT automatically looks at the objects in the file and creates variables with the same
name as the objects.

This is not standard behavior in C++; it isn’t even standard behavior when you’re working with ROOT macros. Don’t
become too used to it!

You can also display the TTree in a different way that doesn’t show the data, but displays the names of the variables
and the size of the TTree:

[] treel->Print()

Either way, you can see that the variables stored in the TTree are event, ebeam, px, py, pz, zv, and chi2.

Create a histogram of one of the variables. For example:

[1 treel->Draw("ebeam")

Using the Draw command, make histograms of the other variables.

11 duplicate some of the descriptive material from the Treeviewer section, in case you decided to skip the quickie tools and get right into the
programming.

60 Chapter 6. The C++ Path

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Nevis Labs ROOT tutorial, Release 22.0.2

Pointers: A too-short explanation (for those who don’t know C++ or
C) (5 minutes)

On the previous page we used the pointer symbol “-> (a dash followed by a greater-than sign) instead of the period *“.”
to issue the commands to the TTree. This is because the variable treel isn’t really the TTree itself; it’s a “pointer”
to the TTree.

The detailed difference between an object and a pointer in C++ (and ROOT) is beyond the scope of this tutorial. I
strongly suggest that you look this up in any introductory text on C++. For now, I hope it’s enough to show a couple of
examples:

[] THID hist1("h1","a histogram",100,-3,3)

This creates a new histogram in ROOT, and the name of the histogram “object” is histl. I must use a period to issue
commands to the histogram:

[] histl.Draw()

Here’s the same thing, but using a pointer instead:

[THID *histl = new TH1D("h1l","a histogram",100,-3,3)

Note the use of the asterisk “*”” when I define the variable, and the use of the C++ keyword new. In this example, hist1
is not a ‘object,’ it’s a ‘pointer’ to the location in computer memory where the object hist1 is stored. I must use the
pointer syntax to issue commands:

[] histl->Draw()

Take another look at the file c1.C that you created in a previous example. ROOT uses pointers for almost all the code
it creates. As I mentioned previously, ROOT automatically creates variables when it opens files in interactive mode;
these variables are always pointers.

It’s a little harder to think in terms of pointers than in terms of objects. But you have to use pointers if you want to use
the C++ code that ROOT creates for you

You also have to use pointers to take advantage of object inheritance and polymorphism in C++. ROOT relies heavily
on object inheritance (some would say too heavily), and this is often reflected in the code it generates.

. Pointers: A too-short explanation (for those who don’t know C++ or C) (5 minutes) 61

https://www.cplusplus.com/doc/tutorial/pointers/
https://www.programiz.com/cpp-programming/inheritance
https://www.w3schools.com/cpp/cpp_polymorphism.asp

Nevis Labs ROOT tutorial, Release 22.0.2

MAN, | S5UCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

[0x3A28213A
Ox6339292C,
Ox 7363632E.

| HATE YoU.

ot

Figure 6.1:: https://xkcd.com/138/ by Randall Munroe

62

Chapter 6. The C++ Path

https://xkcd.com/138/

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Walkthrough: Simple analysis using the Draw command, part 2
(10 minutes)

Instead of just plotting a single variable, let’s try plotting two variables at once:

[1] treel->Draw("ebeam:px")

Note: This is a scatterplot, a handy way of observing the correlations between two variables. The Draw command
interprets the variables as (“y:x”) to decide which axes to use.

It’s easy to fall into the trap of thinking that each (x,y) point on a scatterplot represents a pair of values in your n-tuple.
The scatterplot is a grid; each square in the grid is randomly populated with a density of dots proportional to the number
of values in that square.

Try making scatterplots of different pairs of variables. Do you see any correlations?

Note: If you see a shapeless blob on the scatterplot, the variables are likely to be uncorrelated; for example, plot px
versus py. If you see a pattern, there may be a correlation; for example, plot pz versus zv. It appears that the higher
pz is, the lower zv is, and vice versa. Perhaps the particle loses energy before it is deflected in the target.

Let’s create a “cut” (a limit on the range of a variable):

[] treel->Draw("zv","zv<20")

Look at the x-axis of the histogram. Compare this with:

[] treel->Draw("zv'")

Note: Note that ROOT determines an appropriate range for the x-axis of your histogram. Enjoy this while you can;
this feature is lost when you start using analysis macros.

A variable in a cut does not have to be one of the variables you’re plotting:

[] treel->Draw("ebeam","zv<20")

Try this with some of the other variables in the tree.

The symbol for logical AND in C++ is “&&”. Try using this in a cut, e.g.:

[] treel->Draw("ebeam","px>10 && zv<20")

. C++ Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes) 63

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Using C++ to analyze a Tree (10 minutes)

Note: You can spend a lifetime learning all the in-and-outs of object-oriented programming in C++.! Fortunately, you
only need a small subset of this to perform analysis tasks with ROOT. The first step is to have ROOT write the skeleton
of an analysis class for your n-tuple. This is done with the MakeSelector command.’

Let’s start with a clean slate: quit ROOT if it’s running and start it up again. Open the ROOT tree again:

[1] TFile myFile("experiment.root")

Now create an analysis macro for treel with MakeSelector. I’'m going to use the name “Analyze” for this macro,
but you can use any name you want; just remember to use your name instead of “Analyze” in all the examples below.

[1] treel->MakeSelector("Analyze")

Switch to the UNIX window and examine the files that were created:

> less Analyze.h
> less Analyze.C

Note: Unless you’re familiar with C++, this probably looks like gobbledy-gook to you. (I know C++, and it looked
like gobbledy-gook to mie... at first.) We can simplify this by understanding the approach of most analysis tasks:

* Definition — define the variables we’re going to use.
* Initialization - open files, create histograms, etc.

* Loop - for each event in the n-tuple or Tree, perform some tasks: calculate values, apply cuts, fill histograms,
etc.

* Wrap-up - display results, save histograms, etc.

You’ve probably already guessed that the lines beginning with // are comments. They describe more than we’re going
to use, so I'll narrow things down below.’

Here’s a simplified version of the C++ code from Analyze.C. I've removed the automatically generated comments
created by ROOT, and minimized the routines SlaveBegin and SlaveTerminate which we won’t use for this tutorial.
I also marked the places in the code where you’d place your own commands for Definition, Initialization, Loop, and
Wrap-up. Compare the code you see in Analyze.C with what I’ve put below. If you wish, you can edit the contents of
your Analyze.C to match what I've done; it will give you practice using emacs or whatever text editor you choose.*

! That’s four lifetimes, five if you’re studying LaTeX. And you thought you only signed up for a ten-week project! Gosh, I wonder if it takes a
lifetime to understand high-energy physics.

2 If you’re bolder or familiar with C++, you don’t have to use MakeSelector to write an analysis class (specifically, a TSelector class) for you;
look up TTreeReader on the ROOT web site. I use MakeSelector in this tutorial to spare you from having to define a TTreeReaderValue for
every branch in the TTree. If you’re willing to follow the directions for TTreeReader, you may get code that will be easier for you to revise in the
long run. For an example, see ~seligman/root-class/AnalyzeReader.C

3 Many of the comments, as well as the routines SlaveBegin and SlaveTerminate refer to something called PROOF. This is a method of
breaking up your n-tuple into sections and analyzing each section on a separate CPU core of your computer.

By the way, PROOF has nothing directly to do with batch processing, which I describe in one of the optional lectures of this course. If you do
use PROOF, note that SlaveBegin and SlaveTerminate are where you put your initialization and wrap-up code, respectively, and Begin and
Terminate should be “stubs.”

There’s another ROOT class that can speed up n-tuple analysis on machines with multiple cores: RDataFrame.

4 You can copy the “reduced” file from my area if (A) you’re pressed for time, or (B) just feeling lazy today.

> cp ~seligman/root-class/Analyze.C $PWD

64 Chapter 6. The C++ Path

https://root.cern/doc/master/classTTreeReader.html
https://root.cern.ch/doc/v608/classTTreeReader.html

Nevis Labs ROOT tutorial, Release 22.0.2

Listing 6.1: Example C++ TSelector macro

#define Analyze_cxx
#include "Analyze.h"
#include <THZ2.h>

#include <TStyle.h>

R DeflnltiOH SeC‘tiOI‘l E i R R i

//:’.‘:':7':
void Analyze::Begin(TTree * /*tree®/)
{

TString option = GetOption();

//7(-:'::':7%7?:’::'::? Initlalizatlon SeCtiOH B

}
void Analyze::SlaveBegin(TTree* tree) {}

Bool_t Analyze::Process(Long64_t entry)

{
// Don't delete this line! Without it the program will crash.
fReader.SetEntry(entry) ;
//71‘:'.‘:1‘71‘71‘7?:'.‘7(‘ Loop SeCtiOH B
// You probably want GetEntry(entry) here.
return KTRUE;
}

void Analyze::SlaveTerminate() {}

void Analyze::Terminate()

{

//-.'.-:'.-

* Wrap-up section **

}

Compare this with the Python code in Listing 7.1.

. Walkthrough: Using C++ to analyze a Tree (10 minutes)

65

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Walkthrough: Running the Analyze macro (10 minutes)
As it stands, the Analyze macro does nothing, but let’s learn how to run it anyway. Quit ROOT, start it again, and enter
the following lines:

[] TFile myFile("experiment.root")
[treel->Process("Analyze.C")

Note: Get used to these commands. You’ll be executing them over and over again for the next several exercises.
Remember, the up-arrow and tab keys are your friends!’

Let’s examine each of those commands:

e TFile myFile("experiment.root") — tells ROOT to load the file experiment.root into memory. This
saves you from creating the TBrowser and double-clicking on the file name every time you start ROOT (and
you’ll be restarting it a lot!).

e treel->Process("Analyze.C") —load Analyze.C and run its analysis code on the contents of the tree. This
means:

load your definitions;

execute your initializations;

execute the loop code for each entry in the tree;

execute your wrap-up code.

After the second command, ROOT will pause as it reads through all the events in the tree. Since we haven’t included
any analysis code yet, you won’t see anything happen.

Note: Take another look at Analyze.h, also called a “header file.” (Analyze.C is the “implementation file.”) If you
scan through it, you’ll see C++ commands that do something with “branches,” “chains,” and loading the variables from
a tree. Fancy stuff, but you don’t have to know about any of the nitty-gritty details. Now go back and look at the top of
Analyze.C. You’ll see the line

#include "Analyze.h"

This means ROOT will include the contents of Analyze.h when it loads Analyze.C. This takes care of defining the
C++ variables for the contents of the tree.

! If you're a real ROOT honcho (and I know you want to be), there’s an even faster way to do this. When I work through the exercises in this
course, I start ROOT with this command:
> root experiment.root

This means to run ROOT and to open file experiment.root right away. I can omit the TFile command and get to work.
If you want to be even faster (and who doesn’t want to be?) you can sometimes skip messing with the TBrowser. After you've opened a file, try
the ROOT interpreter command:

[1 .1s

This will list the contents of the file on the terminal.

66 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Walkthrough: Making a histogram with Analyze (15 minutes)

Edit the file Analyze.C. In the Definitions section, insert the following code:

TH1* chi2Hist = NULL;

Note: This means “define a new histogram pointer and call it chi2Hist.” Why define this as a pointer when plain ol’
variables are easier to use? The short answer is that ROOT uses pointers all the time; for example, if you want to read
something from a file, you must always use pointers. The sooner you get used to pointers, the better.'

[T

Don’t forget the semi-colons ““;” at the ends of the lines! You can omit them in interactive commands, but not in macros.

In the Initialization section, insert the following code:

chi2Hist = new TH1D("chi2","Histogram of Chi2",100,0,20);

Note: This means “set this pointer to a new histogram object.” We’re doing this here, instead of the Definitions section,
because sometimes you want quantities like histogram limits to be variable rather than fixed; e.g., they depend on user
input.

In the Loop section, put this in:

GetEntry(entry);
chi2Hist->Fill(*chi2);

Note: The first of these two lines means “get the ‘(entry+1)-th’ row from the TTree”; e.g., if entry is 100, get the
101st row from the n-tuple.” Note that the variable entry comes from an argument to the Process method, so you
don’t have to set it. This line will assign values to variables defined in the n-tuple: *ebeam, *chi2, and so on.? In code
prepared by MakeSelector, the variables extracted from an n-tuple are pointers; they have to be prefixed with “*” to
access their values.

The second line means “in the histogram chi2Hist add 1 to a bin that corresponds to the value of *chi2.”

This goes in the Wrap-up section:

chi2Hist->Draw();

I Why are we defining a pointer then setting it equal to NULL? I'm teaching you to avoid a common problem in programming: uninitialized
variables. If we didn’t set chi2Hist to NULL, what would its value be? I don’t know. It would likely be set to zero, which is also the typical value
of NULL. But this behavior varies between different C++ compilers. It’s better to be sure.

This is not an issue in the code we’re writing now, but in the future you’ll discover that uninitialized variables cause lots of crashes. Let’s get into
good programming habits and avoid them from the start.
Some compilers offer another name for NULL: nullptr. They both have the same value, but for you one may be clearer than the other.

2 Actually, in the context of MakeSelector it means “get the data from the TTree pointed to by fReader.SetEntry(entry)”.

Note that when entry is 0, GetEntry will fetch the first row in the n-tuple; that’s why when entry is 100, GetEntry will fetch the 101st row in
the n-tuple.

3 It’s mildly annoying that whenever you use MakeSelector to create an analysis skeleton, you must remember to put a GetEntry line. Since
MakeSelector is doing everything else for us, why can’t it put in that one line too so we don’t have to remember?

The answer is that there’s more that can be done with the TSelector skeleton than we’re doing in this course; do a web search on “TSelector
example” for some ideas. Since there are times when a simple line like GetEntry(entry) is not what you want, or you might create an analysis
skeleton for one tree and use it on another, MakeSelector makes you put in the GetEntry line manually.

. C++ Walkthrough: Making a histogram with Analyze (15 minutes) 67

https://www.google.com/search?q=tselector+example
https://www.google.com/search?q=tselector+example

Nevis Labs ROOT tutorial, Release 22.0.2

Note: You already know what this does; you’ve used it before!

Save the file, quit and restart ROOT, then enter the same commands as before:

[] TFile myFile("experiment.root")
[treel->Process("Analyze.C")

Note: Finally, we’ve made our first histogram with a C++ analysis macro. In the Initialization section, we defined a
histogram; in the Loop section, we filled the histogram with values; in the Wrap-up section, we drew the histogram.

“What histogram? I don’t see anything!” Don’t forget: if you have the TBrowser open, you may need to click on the
Canvas 1 tab.

How did I know which bin limits to use on chi2Hist? Before I wrote the code, I drew a test histogram with the
command:

[] treel->Draw("chi2")

Hmm, the histogram’s axes aren’t labeled. How do I put the labels in the macro? Here’s how I figured it out: I labeled
the axes on the test histogram by right-clicking on them and selecting SetTitle. I saved the canvas by selecting Save-
>c1.C from the File menu. I looked at c1.C and saw these commands in the file:

chi2->GetXaxis()->SetTitle("chi2");
chi2->GetYaxis()->SetTitle("number of events");

I scrolled up and saw that ROOT had used the variable chi?2 for the name of the histogram pointer. I copied the lines
into Analyze.C, but used the name of my histogram instead:

chi2Hist->GetXaxis()->SetTitle("chi2");
chi2Hist->GetYaxis()->SetTitle("number of events");

Try this yourself: add the two lines above to the Initialization section, right after the line that defines the histogram.
Test the revised Analyze class.

68 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Exercise 2: Adding error bars to a histogram (5 minutes)

We're still plotting the chi2 histogram as a solid curve. Most of the time, your supervisor will want to see histograms

with errors. Revise the Analyze: :Terminate method in Analyze.C to draw the histograms

with error bars.

Hint

Look back at Working with Histograms.

side of the plot. We’ll investigate the reason why in a subsequent exercise.

C") again. Don’t forget the up-arrow key!

Warning: The histogram may not be immediately visible, because all the points are squeezed into the left-hand

After you make a change to Analyze.C, you have to restart ROOT before you run treel->Process("Analyze.

chi2

. _ htemp
E - . Entries 100000
g 60000 — Mean 1.012
= N StdDev 0.3556
E |
S 50000 —
= |
C —

40000—

30000{— -

20000—

10000—

D B 1=~ | l | 1 1 1 | 1 1 1 | 1 l 1 | 1 1 1 | 1 l l | 1 1 1 | 1 1 1 | 1 l l | 1
0 2 4 6 8 10 12 14 16 18
chi2

Figure 6.2:: What I get when I plot chi2 with errors bars turned on.

Note: See rhis note in the Python tutorial for how I made this plot.

. C++ Exercise 2: Adding error bars to a histogram (5 minutes)

69

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 3: Two histograms in the same loop (15 minutes)

Revise Analyze.C to create, fill, and display an additional histogram of the variable ebeam (with error bars and axis
labels, of course).

Warning: Take care! Recall that I broke a rypical physics analysis task into pieces: Definition, Initialization,
Loop, and Wrap-up; I also marked the locations in the macro where you’d put these steps.

What may not be obvious is that all your commands that relate to definitions must go in the Definitions section,
all your commands that are repeated for each event must go in the Loop section, and so on. Don’t try to create two
histograms by copying the entire program and pasting it more than once; it won’t work.

Prediction: You’re going to run into trouble when you get to the Wrap-up section and draw the histograms. When
you run your code, you’ll probably only see one histogram plotted, and it will be the last one you plot.

The problem is that when you issue the Draw command for a histogram, by default it’s drawn on the “current”
canvas. If there is no canvas, a default one (our old friend c1) is created. Both histograms are being drawn to the
same canvas.

The easiest way to solve this problem is to create a new canvas for each histogram. Look at c1.C to see an example
of how a canvas is created. Look up the TCanvas class on the ROOT web site to figure out what the commands do.
To figure out how to switch between canvases, look at TCanvas: :cd() (that is, the cd() method of the TCanvas
class).

Is the ebeam histogram empty? Take a look at the lower and upper limit of the x-axis of your histogram. What is
the range of ebeam in the n-tuple?

70 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 4: Displaying fit parameters (10 minutes)

Fit the ebeam histogram to a gaussian distribution.

Note: OK, that part was easy. It was particularly easy because the “gaus” function is built into ROOT, so you don’t
have to worry about a user-defined function.

Let’s make it a bit harder: the parameters from the fit are displayed in the ROOT text window; your task is to put them
on the histogram as well. You want to see the parameter names, the values of the parameters, and the errors on the
parameters as part of the plot.

Note: This is trickier, because you have to hunt for the answer on the ROOT web site... and when you see the answer,
you may be tempted to change it instead of typing in exactly what’s on the web site.

Take a look at the description of the TH1: :Draw() method. In that description, it says “See THistPainter::Paint for a
description of all the drawing options.” Click on the word THistPainter. There’s lots of interesting stuff here, but
for now focus on the section “Fit Statistics.” (This is a repeat of how I found the “surf1” option in Exercise 1.)

There was another way to figure this out, and maybe you tried it: Draw a histogram, select Options->Fit
Parameters, fit a function to the histogram, save it as c1.C, and look at the file. OK, the command is there, min-
gled with the TPaveStats options... but would you have been able to guess which one it was if you hadn’t looked it
up on the web site?

. Exercise 4: Displaying fit parameters (10 minutes) 71

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 5: Scatterplot (10 minutes)
Now add another plot: a scatterplot of chi2 versus ebeam. Don’t forget to label the axes!

Hint: Remember back in Exercise 1,1 asked you to figure out the name TF2 given that the name of the 1-dimensional
function class was TF1? Well, the name of the one-dimensional histogram class is TH1D, so what do you think the name
of the two-dimensional histogram class is? Check your guess on the ROOT web site.

To fill a one-dimensional histogram, e.g., chi2hist, you use a Fill command with a single argument:

chiz2hist->Fill(*chi2);

How do you think you might fill a two-dimensional histogram? Check your answer on the ROOT web site.

72 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Calculating our own variables (10 minutes)

Let’s calculate our own values in an analysis macro, starting with pt, from our Treeviewer exercise. Let’s begin with a
fresh analysis skeleton:

[] treel->MakeSelector("AnalyzeVariables™)

In the Process section, put in the following line (remember: all the n-tuple variables are pointers):'

Double_t pt = TMath::Sqrt((*px)*(*px) + Cpy)*(Cpy));

Note: What does this mean? Whenever you create a new variable in C++, you must say what type of thing it is. We’ve
already done this in statements like

TF1 func("user","gaus(0)+gaus(3)")
This statement creates a brand-new variable named func, with a type of TF1. In the Process section of
AnalyzeVariables, we're creating a new variable named pt, and its type is Double_t.

For the purpose of the analyses that you're likely to do, there are only a few types of numeric variables that you’ll have
to know:

¢ Float_t is used for real numbers.

* Double_t is used for double-precision real numbers.

e Int_t is used for integers.

* Bool_t is for boolean (true/false) values.

* Long64._t specifies 64-bit integers, which you probably won’t need to use.
Most physicists use double precision for their numeric calculations, just in case.’

ROOT comes with a very complete set of math functions. You can browse them all by looking at the TMath class on

the ROOT web site, or Chapter 13 in the ROOT User’s Guide. For now, it’s enough to know that TMath: : Sqrt ()

computes the square root of the expression within the parenthesis “()”.}

Test the macro in AnalyzeVariables to make sure it runs. You won’t see any output, so we’ll fix that in the next exercise.

! You also have to put in that GetEntry line, which I complained about earlier.
2 If you already know C++: the reason why I don’t simply tell you to use the built-in types float, double, int, and bool is discussed in Chapter
2 of the ROOT Users Guide.
However, if you decide to use the simpler names for the numeric types, I won’t mind. You’re not likely to use any of the code in this tutorial in
another C++ compiler. But bear in mind that when you start programming “for real”, it’s not certain which compilers you’ll use in the future.
3 To be fair, there are C++ math packages as well. I could have asked you to do something like this:

#include <cmath>
... fetch px and py
pt = std::sqrt((*px)*(*px) + (C*py)*(C*py));
The reason why I ask you to use ROOT’s math packages is that I want you to get used to looking up and using ROOT’s basic math functions
(algebra, trig) in preparation for using its advanced routines (e.g., fourier analysis, finding polynomial roots).

. Walkthrough: Calculating our own variables (10 minutes) 73

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 6: Plotting a derived variable (10 minutes)

Revise AnalyzeVariables.C to make a histogram of the variable p¢. Don’t forget to label the axes; remember that the
momenta are in GeV.

Note: If you want to figure out what the bin limits of the histogram should be, I'll permit you to “cheat” and use the
following command interactively:'

treel->Draw("sqrt(px*px + py*py)")

LIf you compare this command with the computation of pt on the previous page, you may be either confused or irritated: When using C++
you have to access the n-tuple variables using pointer notation like “(*px)”, while when using ROOT directly you can get away with just using the
variable names like px. This is one of the reasons many folks prefer Python.

74 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 7: Trig functions (15 minutes)

Revise AnalyzeVariables.C to include a histogram of theta.

Note:

I’'ll make your life a little easier: the math function you want is TMath: : ATan2 (y,x), which computes the

arctangent of y/x. It’s better to use this function than TMath::ATan(y/x), because the ATan2 function correctly
handles the case when x=0.

4&.05 ALAMOS, I"?"fE“E
WE HAVE' A DECISION. IF WEVE
DONE QUR MATH RIGHT, THIS
TEST WILL UNLEASH HEAVENS
FIRE AND MAKE Us AS GODS,

i

BUT 1T PosSIBLE WE MADE A
MISTAKE, AND THE HEAT WL
IGNITE THE ATMOSPHERE,,

DESTROYING THE PLANET IN
A CLEANSING (ONFLAGRATION.

2

IS IT "Sop cAH T0R"

R "COH S5PH TOA'?
OH, R THE LOE OF...
CAN SOMEDNE
REDO STEVES WORK?

Figure 6.3:: https://xkcd.com/809/ by Randall Munroe

. Exercise 7: Trig functions (15 minutes)

75

https://xkcd.com/809/

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Walkthrough: Applying a cut (10 minutes)

Note: The last “trick” you need to learn is how to apply a cut in an analysis macro. Once you’ve absorbed this, you’ll
know enough about ROOT to start using it for a real physics analysis.

The simplest way to apply a cut in C++ is to use the if statement. This is described in every introductory C and C++
text, and I won’t go into detail here. Instead, I'll provide an example to get you started.

Once again, let’s start with a fresh macro:

[1 treel->MakeSelector("AnalyzeCuts")

Our goal is to count the number of events for which pz is less than 145 GeV. Since we’re going to count the events,
we’re going to need a counter. Put the following in the Definition section of AnalyzeCuts.C:

Int_t pzCount = 0;

Note: Why Int_t and not Long64_t? I find that Int_t is easier to remember. I could even “cheat” and just use int,
which will work for this example. You would only have to use the type Long64_t if you were counting more than 23!
entries. I promise you that there aren’t that many entries in this file!'

For every event that passes the cut, we want to add one to the count. Put the following in the Process section:

if ((*pz) < 145)
{

pzCount = pzCount + 1; // you could use "pzCount++;" instead

Note: Be careful: it’s important that you surround the logical expression (*pz) < 145 with parentheses “()”, but the
“if-clause” must use curly brackets “{}”.

Now we have to display the value. Again, I'm going to defer a complete description of formatting text output to a C++
textbook, and simply supply the following statement for your Wrap-up section:

std::cout << "The number of events with pz < 145 is
<< pzCount << std::endl;

Note: When I run this macro, I get the following output:

The number of events with pz < 145 is 14962

Hopefully you’ll get the same answer.

! Recall that in the lecture I gave at the start of the class, I mentioned that other commonly used data-analysis programs couldn’t handle a large
number of events. Can you picture an Excel spreadsheet with more than 23! rows? ROOT can handle datasets with up to 263 entries!
Having trouble visualizing powers of 2? Remember that 210 ~ 103, so 263 = 23 x (260) = 23 x (210)6 ~ 23 x (10326 = 8+ 10'8 or about
eight quintillion, roughly the number of grains of sand in the world. My claim “ROOT can handle datasets with up to 26 entries” is theoretical
rather than practical.

76 Chapter 6. The C++ Path

https://www.learncpp.com/cpp-tutorial/introduction-to-iostream-cout-cin-and-endl/

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 8: Picking a physics cut (15 minutes)
Go back and run the macro you created in Exercise 5. If you’ve overwritten it, you can copy my version and copy-n-paste
the relevant lines to your code:

> cp ~seligman/root-class/AnalyzeExercise5.C $PWD
> cp ~seligman/root-class/AnalyzeExercise5.h $PWD

Note: The chi2 distribution and the scatterplot hint that something interesting may be going on.

The histogram, whose limits I originally got from the command treel->Draw("chi2"), looks unusual: there’s a
peak around 1, but the x-axis extends far beyond that, up to chi2 > 18. Evidently there are some events with a large
chi2, but not enough of them to show up on the plot.

On the scatterplot, we can see a dark band that represents the main peak of the chi2 distribution, and a scattering of
dots that represents a group of events with anomalously high chi2.

The chi2 represents a confidence level in reconstructing the particle’s trajectory. If the chi2 is high, the trajectory
reconstruction was poor. It would be acceptable to apply a cut of “chi2 < 1.5”, but let’s see if we can correlate a large
chi2 with anything else.

Write a macro to create a scatterplot of chi2 versus theta. It’s easiest if you just copy the relevant lines from your
code in Exercise 7; there are files AnalyzeExercise7.C and .h in my area if it will help.

Note: Take a careful look at the scatterplot. It looks like all the large-chi2 values are found in the region theta > 0.15
radians. It may be that our trajectory-finding code has a problem with large angles. Let’s put in both a theta cut and a
chi2 cut to be certain we’re looking at a sample of events with good reconstructed trajectories.

Use an 1if statement to only fill your histograms if chi2 < 1.5 and theta < 0.15. Change the bin limits of your histograms
to reflect these cuts; for example, there’s no point to putting bins above 1.5 in your chi2 histograms since you know
there won’t be any events in those bins after cuts.

Note: It may help to remember that the symbol for logical AND in C++ is &&.

A tip for the future: in a real analysis, you’d probably have to make plots of your results both before and after cuts. A
physicist usually wants to see the effects of cuts on their data.

I confess: I cheated when I pointed you directly to theta as the cause of the high-chi2 events. I knew this because I
wrote the program that created the tree. If you want to look at this program yourself, go to the UNIX window and type:

> less ~seligman/root-class/CreateTree.C

. Exercise 8: Picking a physics cut (15 minutes) 77

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 9: A bit more physics (15 minutes)

Assuming a relativistic particle, the measured energy of the particle in our example n-tuple is given by
E}cas = P2 + 1) + 12

and the energy lost by the particle is given by
Eloss = Eveam — Emeas

Create a new analysis macro (or revise one of the ones you’ve got) to make a scatterplot of Ej,ss vs. zv. Is there a
relationship between the z-distance traveled in the target and the amount of energy lost?

78 Chapter 6. The C++ Path

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 10: Writing histograms to a file (10 minutes)

In all the analysis macros we’ve worked with, we’ve drawn any plots in the Terminate method. Pick one of your
analysis macros that creates histograms, and revise it so that it does not draw the histograms on the screen, but writes
them to a file instead. Make sure that you don’t try to write the histograms to “experiment.root”; write them to a
different file named “analysis.root”. When you’re done, open “analysis.root” in ROOT and check that your plots are
what you expect.

Hint: In Saving your work, part 2, 1 described all the commands you’re likely to need.

Don’t forget to use the ROOT web site as a reference. Here’s a question that’s also a bit of a hint: What would be the
difference between opening your new file with “UPDATE” access, “RECREATE” access, and “NEW” access? Why
might it be a bad idea to open a file with “NEW” access? (A hint within a hint: what would happen if you ran your
macro twice?)

. Exercise 10: Writing histograms to a file (10 minutes) 79

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 11: Stand-alone program (optional) (60 minutes or more if
you don’t know C++)

Note: Why would you want to write a stand-alone program instead of using ROOT interactively? Compiled code
executes faster; maybe you’ve already learned about the techniques described in chapter 7 of the ROOT User’s Guide.
Stand-alone programs are easier to submit to batch systems that run in the background while you do something else.
The full capabilities of C++ are available.

I’1l be honest with you: I’m spending all this time to teach you about interactive ROOT, but I never use it. I can develop
code faster in a stand-alone program, without restarting ROOT or dealing with a puzzling error message that refers to
the wrong line in a macro.

If it’s near the end of the last day of this course, don’t bother to start this exercise. But if you have an hour or more —
well, you're pretty good. This exercise is a bit of a challenge for you.

So far, you’ve used ROOT interactively to perform the exercises. Your task now is to write a stand-alone program that
uses ROOT. Start with the macro you created in Exercise 10: you have a ROOT script (a “.C” file) that reads an n-tuple,
performs a calculation, and writes a plot to a file. Create, compile, and run a C++ program (a “.cc” file) that does the
same thing.

Note: You can’t just take Analyze.C, copy it to Analyze. cc, and hope it will compile. For one thing, Analyze.C does
not have a main routine; you will have to write one. Also, C++ doesn’t know about the ROOT classes; you have to find
a way to include the classes in your program (here’s a hint).

KEEPIN MINDTHATTM. | ..\MJOUL IT'S LIKE A SALAD RECIPE | [IT5 LIKE SOMEONE ToOK A
SELF-TAUGH, S0MY CODE | 14 15' e BeiNG N | WRITTEN BY A CORPORATE. | | TRANSCRIPT OF A COURLE
MAY BEA LITLE MESSY | A HoUSE BUILT BYA LAWYER USING A PHONE | [ARGUING AT IKER AND MADE
LETE CHILD USING NOTHING | PUTOCORRECT THAT ONLY | | RANDOM EDITS UNTIL IT
ETESE" | BUr A HATCHET AND A | KNEW EXCEL FORMULRS, | | COMPILED WITHOUT ERRORS.
TSENE. | PICTURE OFA HOUSE. Wy T REPD
\ (ﬁS‘M.E?m

1

Figure 6.4:: https://xkcd.com/1513/ by Randall Munroe

Note: When you try to compile the program, the following simple attempt won’t work:

> g++ Analyze.cc -o Analyze

You will have to add flags to the g++ command that will refer to the ROOT header files and the ROOT libraries. You
can save yourself some time by using the root-config command. Use its --help option to see what it can do:

> root-config --help

Try it:

> root-config --cflags
> root-config --1libs

80

Chapter 6. The C++ Path

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://xkcd.com/1513/

Nevis Labs ROOT tutorial, Release 22.0.2

Is there were a way of getting all that text into your compilation command without typing it all over again? This is
where the UNIX “backtick” comes in handy: it executes whatever command is between the backticks, and returns the
output as a text string. Try:

> g++ Analyze.cc -o Analyze ‘root-config --cflags"

Be careful as you type this; it’s not the usual single quote (*) but the backtick (*), which is typically located in the upper
left-hand corner of a computer keyboard.'

Are things still not working? Maybe I want you to think about adding more than one argument to a single command.

That’s enough hints.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.

HEY! GETBACK Y™
TO WORK!

Figure 6.5:: https://xkcd.com/303/ by Randall Munroe

! This is esoteric and you probably don’t need to know this, but you know how much I hate to lie to you:

In the UNIX shells bash, zsh, and ksh, a better approach to capturing a command’s output is to use $(command) instead of *command'; e.g.,
$(root-config --cflags). But the backtick also works in environments where $() does not, e.g., in tcsh and scripting languages like Perl and
Ruby.

On Nevis particle-physics systems, most people are set up with bash or zsh. The electronics-design group uses tcsh (since that’s what the design
group at CERN uses). If you’re not at Nevis, I have no idea which shell you’re using, which is why I went with the backticks.

Exercise 11: Stand-alone program (optional) (60 minutes or more if you don’t know C++) 81

https://xkcd.com/303/
https://www.gnu.org/software/bash/manual/bash.html
https://zsh.sourceforge.io/Doc/Release/zsh_toc.html
https://man.openbsd.org/ksh.1
https://linux.die.net/man/1/tcsh
https://perldoc.perl.org/perl
https://www.ruby-lang.org/en/documentation/

Nevis Labs ROOT tutorial, Release 22.0.2

82

Chapter 6. The C++ Path

CHAPTER
SEVEN

THE PYTHON PATH

Congratulations on choosing to work with Python. It’s obviously better than the The C++ Path.!

There are a lot of topics listed below. Don’t let that discourage you. Many of the sections below are quite short.” Again,
the important thing is for you to learn something from doing what exercises you can in the time we have.

! For one thing, the xkcd cartoons are funnier.
2 Many of the sections don’t have any footnotes or cartoons at all, just to make them shorter.

83

Nevis Labs ROOT tutorial, Release 22.0.2

A brief review (5 minutes)

Start up Jupyter if it’s not already started. At Nevis, this means to visit https://notebook.nevis.columbia.edu, type your
Nevis account name and password, then select Python 3 from the New pop-up on the upper left. Use File->Rename...
to change the name from “Untitled” to anything you want; e.g., “Basic Test”.

What turns Python into pyroot is the inclusion of the ROOT libraries. That’s done with the import command. Cut-
and-paste the following into the first cell, then press SHIFT-ENTER.

from ROOT import TH1D, TCanvas

my_canvas = TCanvas()

example = THID("example","example histogram",100,-3,3)
example.FillRandom('gaus", 10000)

example.Fit("gaus')

example.Draw()

my_canvas.Draw()

,/
.,%

o
'l
L
rd
Fo
i

7
2
=
S
=

r
L ars Soaiii S

I DUNNO... /
DYNAMIC TYPING? T JUST TYPED
WHITEGRRCE? import mﬁ?gmuffy
/ COME ToiN Sl THATS 1T?
T LEARNED IT LAST PROGRAITMING ... T ALS0 SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN! EVERYHING IN THE
IS S0 SIMPLE ! ITS A WHOLE MEDICINE CABINET
| NEW WORLD FOR COMPARISON.
HELLO WORLD 15 JUST N UP HERE! [
print "Hello, world!’ BUT HOW ARE BUT T THINK THIS
YOU FLYING? 1S THE PYTHON.

Figure 7.1:: https://xkcd.com/353/ by Randall Munroe

84

Chapter 7. The Python Path

https://notebook.nevis.columbia.edu
https://xkcd.com/353/

Nevis Labs ROOT tutorial, Release 22.0.2

If you worked on 7he C++ Path, you may have noticed that the ROOT C++ interpreter, cling, knows the names of all
the ROOT classes.

[1] THID* example4 = new THID("example4","my fourth histogram",100,-3,3);

[1 example4->Draw();

In Python, you have to explicitly import the ROOT package, pyroot. There are two ways to do this:
Method 1: Import all of ROOT, and indicate which classes are part of ROOT with a prefix:

In [] import ROOT
In [] example4 = ROOT.THID("example4",'"my fourth histogram",100,-3,3)
In [] example4.Draw()

Method 2: Import the classes you’ll need explicitly so you can omit the prefix:

In [] from ROOT import THI1D
In [] example4 = THID("example4","my fourth histogram",100,-3,3)
In [] example4.Draw()

I'm typically going to use the second method in this tutorial, but you can use either one.' If you use the second method,
be aware that if you include a new ROOT class to your Python script (e.g., TCanvas), you’ll have to add it to your
import list:

In [] from ROOT import TH1D, TCanvas

At Nevis, all the various Python distributions I’ve installed include pyroot. If you’re working on a different system, you
may have to install pyroot yourself if it hasn’t already been installed for you. The exact procedure depends on how your
local Python distribution is managed. The following command (or a variation) might work:

pip install --user pyroot

! You may know of a third way: from ROOT import *
Never do this! It’s an extremely bad programming practice that will lead you into disaster someday. In fact, forget I mentioned it. Take some
masking tape and use it to cover this footnote.

. A brief review (5 minutes) 85

Nevis Labs ROOT tutorial, Release 22.0.2

(AT 1 spncers

® M N
ﬂ\‘__, PrReN

/

/ 5 \\\

fusr!locn.l{(:ell ~/newenv/
fusrliocal/lib/ python3.6
(Jusc/local/opt 05t local/ o/ puthen2?

/(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEMHERE)/

MY PYTHON ENVIRONMENT HAS BECOME S0 DEGRADED
THAT My LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Figure 7.2:: https://xkcd.com/1987/ by Randall Munroe

86

Chapter 7. The Python Path

https://xkcd.com/1987/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Walkthrough: Simple analysis using the Draw command (10
minutes)

Note: It may be that all the analysis tasks that your supervisor will ask you to do can be performed using the Draw
command, the Treeviewer, the FitPanel and other simple techniques discussed in the early chapters of the ROOT Users
Guide.

However, it’s more likely that these simple commands will only be useful when you get started; for example, you can
draw a histogram of just one variable to see what the histogram limits might be. Let’s start with the same tasks you did
with Treeviewer.' >

If you didn’t copy the example n-tuple file in The Basics, do so now:

> cp ~seligman/root-class/experiment.root $PWD

Open the sample ROOT TTree in the notebook with the following:

from ROOT import TFile, gROOT
myFile = TFile("experiment.root")
treel = gROOT.FindObject("treel")

Note: The first command imports specific ROOT classes into Python (see the previous page).

That third command means: Look through everything we’ve read in (the “everything” is gROOT) and find the object
whose name is treel.

If you’ve done The C++ Path, note that in Python we have to read in the n-tuple explicitly.

In a notebook, you can’t use the Scan method to look at the contents of the tree, but you can display the names of the
variables and the size of the TTree:

treel.Print()

You can see that the variables stored in the TTree are event, ebeam, px, py, pz, zv, and chi2.

Create a histogram of one of the variables. For example:

from ROOT import TCanvas
my_canvas = TCanvas()
treel.Draw("'ebeam")
my_canvas.Draw()

While we have to explicitly Draw a canvas, we can re-use a previously-defined canvas (the same way command-line
ROOT keeps re-using c1).

Using the Draw commands, make histograms of the other variables.

1T duplicate some of the descriptions from the Treeviewer discussion, in case you decided to rush into programming and skip the simple tools.

2 If you’re experienced with Python, you may ask why I’m not including NumPy, SciPy, and Matplotlib in this tutorial. I want to focus on the
ROOT toolkit, even though many tasks (especially in the Advanced Exercises and Expert Exercises) can be more easily accomplished using those
additional packages. I wrestled with this issue for a while, before deciding that there are hundreds of web pages on these standard Python tools but
few sites on ROOT. But I may change my mind next year!

Python Walkthrough: Simple analysis using the Draw command (10 minutes) 87

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://numpy.org/
https://scipy.org/
https://matplotlib.org/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Walkthrough: Simple analysis using the Draw command,
part 2 (10 minutes)

Instead of just plotting a single variable, let’s try plotting two variables at once:

treel.Draw("ebeam:px")
my_canvas.Draw()

Note: This is a scatterplot, a handy way of observing the correlations between two variables. The Draw command
interprets the variables as (“y:x”) to decide which axes to use.

It’s easy to fall into the trap of thinking that each (X,y) point on a scatterplot represents two values in your n-tuple. The
scatterplot is a grid; each square in the grid is randomly populated with a density of dots proportional to the number of
values in that square.

Try making scatterplots of different pairs of variables. Do you see any correlations?

Note: If you see a shapeless blob on the scatterplot, the variables are likely to be uncorrelated; for example, plot px
versus py. If you see a pattern, there may be a correlation; for example, plot pz versus zv. It appears that the higher
pz is, the lower zv is, and vice versa. Perhaps the particle loses energy before it is deflected in the target.

Let’s create a “cut” (a limit on the range of a variable):

treel.Draw("zv", "zv<20")
my_canvas.Draw()

Look at the x-axis of the histogram. Compare this with:

treel.Draw("zv'")
my_canvas.Draw()

Note: Note that ROOT determines an appropriate range for the x-axis of your histogram. Enjoy this while you can;
this feature is lost when you start using analysis scripts.'

A variable in a cut does not have to be one of the variables you’re plotting:

treel.Draw("ebeam", "zv<20")

Try this with some of the other variables in the tree.

ROOT’s symbol for logical AND is &&. Try using this in a cut, e.g.:

treel.Draw("ebeam", "px>10 && zv<20")

I After this point, I won’t include the my_canvas.Draw() line in future examples, and you’ll have to remember to execute that line. I assume
you’ve gotten into the habit of re-using or cut-and-pasting lines between cells.

88 Chapter 7. The Python Path

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Using Python to analyze a Tree (10 minutes)

Note: You can spend a lifetime learning all the in-and-outs of programming in Python.! Fortunately, you only need a
small subset of this to perform analysis tasks with pyroot.

In ROOT/C++, there’s a method (MakeSelector) that can create a macro for you from a TTree or n-tuple. In pyroot
there’s no direct equivalent. However, the “analysis skeleton” for an n-tuple is much simpler in Python. I’ve got a basic
file in my area that you can copy and edit to suit your task.

Copy my example Python script to your directory. Then take a look at it:

%cp ~seligman/root-class/Analyze.py $PWD
%load Analyze.py

Note: The second of the two magic commands will load the contents of Analyze.py into the next notebook cell, ready
for you to play with it.

Most analysis tasks have the following steps:
¢ Set-up - open files, define variables, create histograms, etc.

* Loop - for each event in the n-tuple or Tree, perform some tasks: calculate values, apply cuts, fill histograms,
etc.

e Wrap-up - display results, save histograms, etc.

Here’s the Python code from Analyze.py. I’ve marked the places in the code where you’d place your own commands
for Set-up, Loop, and Wrap-up.

Listing 7.1: Python analysis “skeleton” for a ROOT n-tuple.

from ROOT import TFile, gDirectory

You probably also want to import THID and TCanvas
unless you're not drawing any histograms.

from ROOT import TH1D, TCanvas

Open the file. Note that the name of your file outside this class
will probably NOT be experiment.root.
myfile = TFile('experiment.root')

Retrieve the n-tuple of interest. In this case, the n-tuple's name is
"treel". You may have to use the TBrowser to find the name of the
n-tuple in a file that someone gives you.

mychain = gDirectory.Get('treel')
entries = mychain.GetEntriesFast()

The Set-up code goes here.
A

for jentry in range(entries):

(continues on next page)

I We’re up to at least four lifetimes, five if you completed The C++ Path, possibly six if you’re learning LaTeX from scratch, maybe even seven
if you skipped ahead to Statistics.

. Walkthrough: Using Python to analyze a Tree (10 minutes) 89

http://Analyze.py
http://Analyze.py

Nevis Labs ROOT tutorial, Release 22.0.2

(continued from previous page)

Copy next entry into memory and verify.
nb = mychain.GetEntry(jentry)

if nb <= 0:
continue

Use the values directly from the tree. This is an example using a
variable '"vertex". This variable does not exist in the example

n-tuple experiment.root, to force you to think about what you're
doing.

myValue = mychain.vertex
myHist.Fill (myValue)

The Loop code goes here.
HHH
The Wrap-up code goes here
##t#

Compare this with the C++ code in Listing 6.1.

Note: You've probably already guessed that lines beginning with “#” are comments.

In Python, “flow control” (loops, if statements, etc.) is indicated by indenting statements. In C++, any indentation
is optional and is for the convenience of humans. In Python the indentation is mandatory and shows the scope of
statements like if and for.

Note that Loop and Wrap-up are distinguished by their indentation. This means that when you type in your own Loop
and Wrap-up commands, they must have the same indentation as the comments I put in.

Take a look at the code mychain.vertex, which means “get the current value of variable vertex from the TTree in
mychain.” This is an example; there’s no variable vertex in the n-tuple in experiment.root. If you want to know what
variables are available, typically you’ll have to examine the n-tuple/TTree in the TBrowser or display its structure with
Print as you did before.

90 Chapter 7. The Python Path

Nevis Labs ROOT tutorial, Release 22.0.2

Walkthrough: Using the Python Analyze script (10 minutes)

As it stands, the Analyze script does nothing, but let’s learn how to run it anyway. Hit SHIFT-ENTER in the cell to run
the script.’

Python will pause as it reads through all the events in the Tree. Since we haven’t included any analysis code yet, you
won’t see anything else happen.

Let’s start making histograms. In the Set-up section, insert the following code:

chi2Hist = TH1D("chi2","Histogram of Chi2",100,0,20)

In the Loop section, put this in:

chi2 = mychain.chi?2
chi2Hist.Fill(chi2)

This goes in the Wrap-up section:

canvas = TCanvas()
chi2Hist.Draw()
canvas.Draw()

Note: Don’t forget about the indentation. The lines in the Loop section must be indented to show they’re part of the
loop.

Execute your revised script.

Note: Finally, we’ve made our first histogram with a Python script. In the Set-up section, we defined a histogram; in
the Loop section, we filled the histogram with values; in the Wrap-up section, we drew the histogram.

How did I know which bin limits to use on chi2Hist? Before I wrote the code, I drew a test histogram:

import ROOT

myFile = ROOT.TFile("experiment.root™)
treel = ROOT.gROOT.FindObject("treel™)
acanvas = TCanvas()

treel.Draw(''chi2")

acanvas.Draw()

Hmm, the histogram’s axes aren’t labeled. How do I put the labels in the script? Here’s how I figured it out: I went
back to command-line ROOT from 7he Basics and plotted chi2 with the Treeviewer. I labeled the axes on my test
histogram by right-clicking on them and selecting SetTitle. I saved the canvas by selecting Save->¢1.C from the File
menu. I looked at c1.C and saw these commands in the file:

! You may want to organize your scripts in files outside of notebook cells. This lets you keep track of different versions of your scripts, and allows
you to use your favorite text editor. To run an external script from within a notebook cell, use the %run magic command; e.g.,
%run Analyze.py
You can save the contents of notebook cells by putting the %%writefile cell magic command at the top of the cell and hitting SHIFT-ENTER;
e.g.,
%%writefile AnalyzeChi2.py

. Walkthrough: Using the Python Analyze script (10 minutes) 91

Nevis Labs ROOT tutorial, Release 22.0.2

chi2->GetXaxis()->SetTitle("chi2");
chi2->GetYaxis()->SetTitle("number of events");

I scrolled up and saw that ROOT had used the variable chi2 for the name of the histogram pointer. I copied the lines
into my Python script, but used the name of my histogram instead, and converted the C++ lines into Python. This
usually means replacing “->” with “.” and removing the semi-colon from the end:

chi2Hist.GetXaxis().SetTitle("chi2")
chi2Hist.GetYaxis().SetTitle("number of events")

Try this yourself: add the two lines above to the Set-up section, right after the line that defines the histogram. Test the
revised script.’

Al. LOADED A STRANGE GAME.
>>> ANALYZE LOVE THE ONLY WINNING
MOVE 1§ NOT TO PLAY.

O O O Oi@

Figure 7.3:: https://xkcd.com/601/ by Randall Munroe. Fortunately it’s easier to analyze histograms than it is to analyze
love. At least it is for me!

2 There’s another way to do this in the notebook. Plot the graph with JSROOT:
%jsroot on
acanvas.Draw()

You can then right-click on the axes, select Title->SetTitle, and enter the axis label you want. However, this solution can’t be automated. If
you have to generate a hundred histograms each with different axis labels, you’ll want a method you can put into a script.

92 Chapter 7. The Python Path

https://xkcd.com/601/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 2: Adding error bars to a histogram (5 minutes)

We're still plotting the chi2 histogram as a solid curve. Most of the time, your supervisor will want to see histograms
with errors. Revise the script to draw the histograms with error bars. (Here’s a hint.)

Warning: The histogram may not be immediately visible, because all the points are squeezed into the left-hand
side of the plot. We’ll investigate the reason why in a subsequent exercise.

chi2

. _ htemp
= - . Entries 100000
g 60000 — Mean 1.012
= N StdDev 0.3556
E |
S 50000 —
S ~
C —

40000—

30000— ~

20000—

10000 —

D B 1= | 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1
0 2 4 6 8 10 12 14 16 18

Figure 7.4:: What I get when I plot chi2 with errors bars turned on.

Note: In case you're interested, the code below is how I made the above plot. I learned to use gPad to access the
temporary histogram from reading the documentation for TTree: :Draw(). I learned about SetTitleOffset by
reading the TAxis documentation, which led me to the list of TGaxis methods. Yes, it was defective work all over
again!

Listing 7.2: How to modify a plot automatically generated by ROOT
from ROOT import TFile, gROOT, TCanvas, gPad
myFile = TFile("experiment.root")
treel = gROOT.FindObject("treel")
my_canvas = TCanvas()
treel.Draw(''chi2","","e")

(continues on next page)

. Python Exercise 2: Adding error bars to a histogram (5 minutes) 93

https://root.cern.ch/doc/master/classTTree.html
https://root.cern.ch/doc/master/classTAxis.html
https://root.cern.ch/doc/master/classTGaxis.html

Nevis Labs ROOT tutorial, Release 22.0.2

Get the temporary histogram used by TTree::Draw()
htemp = gPad.GetPrimitive("htemp")
htemp.GetXaxis().SetTitle("chi2")

htemp.GetYaxis() .SetTitle('number of events")
htemp.GetYaxis() .SetTitleOffset(1.5)
my_canvas.Draw()

(continued from previous page)

94

Chapter 7. The Python Path

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 3: Two histograms in the same loop (15 minutes)

Revise your script to create, fill, and display an additional histogram of the variable ebeam (with error bars and axis
labels, of course).

Warning: Take care! Recall that I broke up a typical physics analysis task into three pieces: the Set-up, the Loop,
and the Wrap-up; I also marked the locations in the script where you’d put these steps.

What may not be obvious is that all your commands that relate to setting things up must go in the Set-up section,
all your commands that are repeated for each event must go in the Loop section, and so on. Don’t try to create two
histograms by copying the entire script and pasting it more than once; it may execute, but it will take twice as long
(because you’re reading the entire n-tuple twice) and you’ll be left with a single histogram at the end.

Prediction: You’re going to run into trouble when you get to the Wrap-up section and draw the histograms. When
you run your code, you’ll probably only see one histogram plotted, and it will be the last one you plot.

The problem is that when you issue the Draw command for a histogram, by default it’s drawn on the most recent
canvas you created. Both histograms are being drawn to the same canvas.

Some clues to solve this problem: Look at the examples above to see how a canvas is created. Look up the TCanvas
class on the ROOT web site to figure out what the commands do. To figure out how to switch between canvases,
look at TCanvas: :cd() (thatis, the cd() method of the TCanvas class). In Python, the namespace delimiter (“*::”

in C++) is a period (““.””), so your solution will involve something like c1.cd (). Or you might define a canvas, draw
in it, define a new canvas, then draw in the newer one.

Is the ebeam histogram empty? Take a look at the lower and upper limits of your histogram. What is the range of
ebeam in the n-tuple?

NEVER HAVE T FELT S0 | WHO WERE YoU,
CLOSE To ANOTHER SoUL | DENVER(ODERT?

l
AND YET SO HELPIESSY ALONE. | 497 L1D how SEE?
AS WHEN T GOOGLE AN ERROR »;\
AND THERES ONE RESULT

ATHRERD BY SOMEONE
WITH THE SAME PROBLEN

ANO NO ANSWER
LAST FOSTED T© IN 2003

Figure 7.5:: https://xkcd.com/979/ by Randall Munroe

. Python Exercise 3: Two histograms in the same loop (15 minutes) 95

https://xkcd.com/979/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 4: Displaying fit parameters (10 minutes)

Fit the ebeam histogram to a gaussian distribution.

Note: OK, that part was easy. It was particularly easy because the “gaus” function is built into ROOT, so you don’t
have to worry about a user-defined function.

Let’s make it a bit harder: the parameters from the fit are displayed in the ROOT text window; your task is to put them
on the histogram as well. You want to see the parameter names, the values of the parameters, and the errors on the
parameters as part of the plot.

Note: This is trickier, because you have to hunt for the answer on the ROOT web site... and when you see the answer,
you may be tempted to change it instead of typing in what’s on the web site (with a prefix of ROOT or including it on
the from import line).

Take a look at the description of the TH1: :Draw() method. In that description, it says “See THistPainter::Paint for a
description of all the drawing options.” Click on the word “THistPainter”. There’s lots of interesting stuff here, but for
now focus on the section “Fit Statistics.” (This is the same procedure for figuring out the “surfl” option for Exercise
).

There was another way to figure this out, and maybe you tried it: Draw a histogram, select Options->Fit Parameters,
fit a function to the histogram, save it as c1.C, and look at the file. OK, the command is there, mingled with the
TPaveStats options... but would you have been able to guess which one it was if you hadn’t looked it up on the web
site?

96 Chapter 7. The Python Path

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 5: Scatterplot (10 minutes)
Now add another plot: a scatterplot of chi2 versus ebeam. Don’t forget to label the axes!

Hint: Remember back in Exercise 1,1 asked you to figure out the name TF2 given that the name of the 1-dimensional
function class was TF1? Well, the name of the one-dimensional histogram class is TH1D, so what do you think the name
of the two-dimensional histogram class is? Check your guess on the ROOT web site.

To fill a one-dimensional histogram, e.g., chi2hist, you use a Fill command with a single argument:

chizhist.Fill(chi2);

How do you think you might fill a two-dimensional histogram? Check your answer on the ROOT web site.

RZ0.06 REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
O GUESS THE DIRECTION OF THE CORRELATION FRoM THE
SCATTER PLOT THAN TO FIND NELJ CONSTELLATIONS ON IT.

Figure 7.6:: https://xkcd.com/1725/ by Randall Munroe

. Python Exercise 5: Scatterplot (10 minutes) 97

https://xkcd.com/1725/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Walkthrough: Calculating our own variables (10 minutes)

Note: There are other quantities that we may be interested in apart from the ones already present in the n-tuple. One
such quantity is pr which is defined by:

pr = /D2 + D2

This is the transverse momentum of the particle, that is, the component of the particle’s momentum that’s perpendicular
to the z-axis.

Let’s calculate our own values in an analysis macro. Load a fresh copy of that script into your notebook:

%load Analyze.py

In the Loop section, put in the following line:

pt = ROOT.TMath.Sqrt(px*px + py*py)

Note: Did that not work? To get at the variables px and py, you have fetch them from the n-tuple with something like
mychain.px. You also have to have either import ROOT or from ROOT import TMath.

ROOT comes with a very complete set of math functions. You can browse them all by looking at the TMath class on
the ROOT web site, or Chapter 13 in the ROOT User’s Guide. For now, it’s enough to know that ROOT . TMath.Sqrt ()

9 |

computes the square root of the expression within the parenthesis “()”.

Test the script to make sure it runs. You won’t see any output, so we’ll fix that in the next exercise.

THIS UEBSITE UANTS THIS JEBSITE UpNTE TO

{lPuoug

T

NICE TRY.

Figure 7.7:: https://xkcd.com/1473/ by Randall Munroe

! To be fair, there are Python math packages as well. I could have asked you to do something like this:

import math
... fetch px and py
pt = math.sqrt(px*px + py*py)
The reason why I ask you to use ROOT’s math packages is that I want you to get used to looking up and using ROOT’s basic math functions
(algebra, trig) in preparation for using its advanced routines (e.g., fourier transforms, multi-variant analysis).

98 Chapter 7. The Python Path

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://xkcd.com/1473/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 6: Plotting a derived variable (10 minutes)

Revise AnalyzeVariables.py to make a histogram of the variable pt. Don’t forget to label the axes; remember that
the momenta are in GeV.

Note: If you want to figure out what the bin limits of the histogram should be, I'll permit you to “cheat” and use the
following command interactively:

treel.Draw("sqrt (px*px + py*py)™)

. Python Exercise 6: Plotting a derived variable (10 minutes) 99

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 7: Trig functions (15 minutes)

The quantity theta, or the angle that the beam makes with the z-axis, is calculated by:

6 = arctan (pT)
Dz

The units are radians. Revise your script to include a histogram of theta.

Note: I'll make your life a little easier: the math function you want is ROOT. TMath.ATan2 (y, x), which computes the
arctangent of y/x. It’s better to use this function than ROOT . TMath.ATan(y/x), because the ATan2 function correctly

handles the case when x=0.

I WisH I CouLb
DO MATH LIKE WHEN
I WAS YOUNG,

HUH"

IT DOESN'T COME EASY
LIKE IT ONCE DID,

UH HUH,

MATH 1S A GAME FOR

THE YOUNG. I NEED
TO SIT BACK AND LET
THE FUTURE HAPPEN.

YOU'RE THIRTEEN.

YES, AND IT5
TME IACCEPT

M:

Figure 7.8:: https://xkcd.com/447/ by Randall Munroe

100

Chapter 7. The Python Path

https://xkcd.com/447/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Walkthrough: Applying a cut (10 minutes)

Note: The last “trick” you need to learn is how to apply a cut in an analysis macro. Once you’ve absorbed this, you’ll
know enough about ROOT to start using it for a real physics analysis.

The simplest way to apply a cut is to use the if statement. This is described in every introductory Python text, and I
won’t go into detail here. Instead I'll provide an example to get you started.

Once again, let’s start with a fresh Analyze script:

%load Analyze.py

Our goal is to count the number of events for which pz is less than 145 GeV. Since we’re going to count the events,
we’re going to need a counter. Put the following in the Set-up section:

pzCount = 0

For every event that passes the cut, we want to add one to the count. Put the following in the Loop section:

if (pz < 145):
pzCount = pzCount + 1

Note: Be careful: Remember that indentation is important. The next statement after pzCount=pzCount+1 must not
be indented the same amount, or it will be considered part of the if statement.

Now we have to display the value. Include the following statement in your Wrap-up section:'

print ("The number of events with pz < 145 is", pzCount)

Note: When I run this macro, I get the following output:

The number of events with pz < 145 is 14962

Hopefully you’ll get the same answer.

! If you’re using Python 2, you may have to omit the parentheses around the arguments of the print statement:

print "The number of events with pz < 145 is", pzCount

. Python Walkthrough: Applying a cut (10 minutes) 101

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 8: Picking a physics cut (15 minutes)

Go back and run the script you created in Exercise 5. If you’ve overwritten it, you can copy my version:

%cp ~seligman/root-class/AnalyzeExercise5.py $PWD
%load AnalyzeExercise5.py

Note: The chi2 distribution and the scatterplot hint that something interesting may be going on.

The histogram, whose limits I originally got from the command treel.Draw("chi2"), looks unusual: there’s a peak
around 1, but the x-axis extends far beyond that, up to chi2 > 18. Evidently there are some events with a large chi2, but
not enough of them to show up on the plot.

On the scatterplot, we can see a dark band that represents the main peak of the chi2 distribution, and a scattering of
dots that represents a group of events with anomalously high chi2.

The chi2 represents a confidence level in reconstructing the particle’s trajectory. If chi2 is high, the trajectory recon-
struction was poor. It would be acceptable to apply a cut of “chi2 < 1.5, but let’s see if we can correlate a large chi2
with anything else.

Make a scatterplot of chi2 versus theta. It’s easiest if you just copy the relevant lines from your code in Exercise 7;
there’s a file AnalyzeExercise7.py in my area if it will help.

Note: Take a careful look at the scatterplot. It looks like all the large-chi2 values are found in the region theta > 0.15
radians. It may be that our trajectory-finding code has a problem with large angles. Let’s put in both a theta cut and a
chi2 cut to be certain we’re looking at a sample of events with good reconstructed trajectories.

Use an if statement to only fill your histograms if chi2 < 1.5 and theta < 0.15. Change the bin limits of your histograms
to reflect these cuts; for example, there’s no point to putting bins above 1.5 in your chi2 histograms since you know
there won’t be any events in those bins after cuts.

Note: It may help to remember that, in Python, you’ll want something like (chi2 < 1.5 and theta < 0.15)

A tip for the future: in a real analysis, you’d probably have to make plots of your results both before and after cuts. A
physicist usually wants to see the effects of cuts on their data.

I must confess: I cheated when I pointed you directly to theta as the cause of the high-chi2 events. I knew this because
I wrote the program that created the tree. If you want to look at this program yourself, go to the UNIX window and

type:

> less ~seligman/root-class/CreateTree.C

102 Chapter 7. The Python Path

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 9: A bit more physics (15 minutes)

Assuming a relativistic particle, the measured energy of the particle in our example n-tuple is given by

2 2 2 2
Eeas =Dy + Dy + D%

and the energy lost by the particle is given by

Eloss = Ebeam -

Emeas

Create a new analysis macro (or revise one of the ones you’ve got) to make a scatterplot of Ej,ss vs. zv. Is there a
relationship between the z-distance traveled in the target and the amount of energy lost?

YES, SUENCE 1S AN
OPEN PROCESS IN
WHICH AGOOD 1DER,
CAN COME
ANYRODY.

)

YES, WIDELY- BELIEVED
THEORIES ARE OV
OXCASION OVERTURNED
BY SIMPLE THOUGHT
EXPERIMENTS.

)

AND YES, YOUR
PHILOSOPHY DEGREE
EQUIFS YoU TO
ASK, INTERESTING
QUESTIONS SOMETIMES.

/

BUT YOU DID NOT JUST YOU JUST DONT
OVERTURN SPECIALRELATMITY, LIKE THATIM
ASUBTECT YOU LEARNED TURNING A
ABOUT AN HOUR AGO, RATNONAL. EYE
WITH YOUR "RACECAR TO YOUR DOGMA.
ov A TRAIN" IDEA. HEY, WHAT'S THE
EMAIL FOR THE

O J PRESIDENT

OF PHYSCS?

Figure 7.9:: https://xked.com/675/ by Randall Munroe

. Python Exercise 9: A bit more physics (15 minutes)

103

https://xkcd.com/675/

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 10: Writing histograms to a file (10 minutes)

In all the analysis scripts we’ve worked with, we’ve drawn any plots in the Wrap-up section. Pick one of your scripts
that creates histograms and revise it so that it does not draw the histograms on the screen but writes them to a file
instead. Make sure that you don’t try to write the histograms to experiment.root; write them to a different file
named analysis.root. When you're done, open analysis.root with the TBrowser in command-line ROOT and
check that your plots are what you expect.

Hint: In Saving your work, part 2, 1 described all the commands you’ll need.

Don’t forget to use the ROOT web site as a reference. Here’s a question that’s also a bit of a hint: What’s the difference
between opening your new file with “UPDATE” access, “RECREATE” access, and “NEW” access? Why might it be
a bad idea to open a file with “NEW” access? (A hint within a hint: what would happen if you ran your script twice?)

104 Chapter 7. The Python Path

Nevis Labs ROOT tutorial, Release 22.0.2

Python Exercise 11: Stand-alone program (optional) (30 minutes)

Note: Why would you want to write a stand-alone program instead of using ROOT interactively?

* You can’t live in a notebook forever.! Typical analysis scripts get so large that you may want to use a regular text
editor to work with them, instead of the limited editing available in a notebook cell.

* One method of speeding up a Python program is to use Cython, a Python optimizing compiler: http://cython.org/.

You can use Cython within a notebook, but you’ll get better results if you create a stand-alone program.

* Stand-alone programs are necessary if you want to submit your Python program to a batch system.

So far, you’ve used ROOT interactively to perform the exercises. Your task now is to write a stand-alone program that
uses ROOT. Start with the script you created in Exercise 10: you have a notebook cell that reads an n-tuple, performs
a calculation, and writes a plot to a file. Create a stand-alone program that does the same thing.

Hint: If you tried to do the C++ version of this Exercise, you may have found it difficult. The Python equivalent is
much easier. Part of the reason is that all the clues you need are in the condor tutorial I frequently teach as part of the

class:

http://www.nevis.columbia.edu/~seligman/root-class/

Look at the instructions for the . py files in that tutorial, then look at the comments in the . py files themselves.

Don’t forget to use module load root (or the equivalent if you're not using a Nevis server) if you expect a stand-alone
Python program to be able to import the ROOT libraries!

LOOKS UKE COMPUTERS

WILL. BEAT HOMANS AT

GO PRETTY SOON.
WOW.

THAT'S THE LAST
OF THE BIG ONES,

2]

VELL, AT LEAST HUMANS
ARE STILL BET?FR AT, UH,

COMING UP WITH RERSSURING
PARABLES ABOUT THINGS
HUMANS ARE BETTER AT?

T MADE A PYTHON SCRIPT

THAT GENERATES THOUSANDS
QPFI::SEH%URSNG PARABLES

E A
ARSI NERR (
UL

Figure 7.10:: https://xkcd.com/1263/ by Randall Munroe

! Whether this is a programming tip or general life advice I leave up to you.

. Python Exercise 11: Stand-alone program (optional) (30 minutes)

105

http://cython.org/
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
http://www.nevis.columbia.edu/~seligman/root-class/
https://xkcd.com/1263/

Nevis Labs ROOT tutorial, Release 22.0.2

106 Chapter 7. The Python Path

CHAPTER
EIGHT

INTERMEDIATE TOPICS

If you’ve gotten this far in the course, just skim the section titles below. If anything interests you, dive in. Otherwise,
use these pages as a reference for the future and move on to the challenges of the Advanced Exercises or the discussion
in the appendix

You’re going to need these resources as you move into the topics for the Advanced Exercises and Expert Exercises. I'm
going to do less “hand holding” in these notes from now on, because a part of these exercises is to teach you how to
use these references.'

! You can still ask me questions during the class; I mean that any remaining written hints in this tutorial will be less detailed or require more
thought.

107

Nevis Labs ROOT tutorial, Release 22.0.2

References

There are several ways to figure out how to do something in ROOT:

* The ROOT web site. As of 2021, these are the areas of the ROOT manual on that site which are supposed to act
as documentation:

— The ROOT Reference. You’ve already visited this area. It contains the detailed description of the ROOT
classes.

— ROOT Basics. The web pages here outline a basic approach to ROOT. They assume you’re already familiar
with C++ or Python. It’s especially useful if you don’t need the step-by-step hand-holding approach I took
in this tutorial.

— ROOT Functional Parts. While this describes the ROOT classes, it does so from a technical perspective
rather than act as a teaching guide. For example, take a look at their introduction to histograms to see if its
approach works for you.

e The ROOT User’s Guide. As I’ve mentioned before, this is a bit out-of-date; it has not been revised since 2018
(and it appears it never will be). For example, there’s nothing in that guide about RDataFrames). But I feel it’s
a much better tutorial for new users than any of the other items on this list.!

 Create something “by hand,” save it as a .C file, then examine the file to see how ROOT does it.

There’s one other resource: the example ROOT programs that come with the package. You’ll find them in $ROOT-
SYS/tutorials. When I ask myself the question “How do I do something complicated in ROOT?” I often find the answer
in one of the examples they provide.

I've found it handy to make my own copy:”

> cp --arv $ROOTSYS/tutorials $PWD

Then I go into the “tutorials” sub-directory, run their examples, and look at their code:

cd tutorials
root demos.C
cd graphics

root first.C
less first.C

V V. V V V

You can also find the tutorials on the ROOT web site, but I find it harder to search for specific examples.

Note: If the distributed nature of the information is annoying to you, welcome to the club! I often have to go hunting
to find the answers I want when using ROOT, even after years of working with the package. Occasionally I’ve had no
other choice but to examine the C++ source code of the ROOT program itself to find out the answer to a question.

! So what ROOT resources are out there that are both up-to-date and suitable for students who are not familiar with programming or data-analysis
concepts? Unfortunately, the only one I know of is the tutorial you're reading now!

2 If the command doesn’t work: Did you remember to type module load root in your UNIX command window? That’s what sets the value
of SROOTSYS, at least on Nevis particle-physics systems.

108 Chapter 8. Intermediate Topics

https://root.cern/manual/
https://root.cern/doc/master/index.html
https://root.cern/manual/basics/
https://root.cern/manual/functional_parts/
https://root.cern/manual/histograms/
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/blog/manual-week/
https://root.cern/doc/master/group__Tutorials.html

Nevis Labs ROOT tutorial, Release 22.0.2

UNDERSTANDING GRANMY: | | THEY DISIORT IT SPACE-TIME 1S LIKE THIS
SPACE-TIME IS LIKE A BECAUSE HEY RE SET OF EQUATIONS, FOR
RUBBER SHEET, MASSIVE | | PULLED DOWN WHICH ANY ANALOGY MUST
OBIECTS DISTORT THE BY...WHAT? BE AN APPROXIMATION.
SHEET, AND— SIGH

ﬁ WA,

\
O 3

Figure 8.1:: https://xkcd.com/895/ by Randall Munroe. Perhaps this is the reason why the ROOT web site no longer
teaches its concepts from scratch. It definitely explains the cartoons and jokes in this tutorial.

. References 109

https://xkcd.com/895/

Nevis Labs ROOT tutorial, Release 22.0.2

Advanced histogramming notes

The entries in this section were long footnotes in a previous edition of this tutorial. I decided to move them here to
make The Basics, The C++ Path, and The Python Path less cluttered.’

Mean and StdDev, with weights

All the histograms you’ve made have a “Mean” and “StdDev” in the upper-right-hand corner of the plot. In case you
need a formal definition, the mean ¥ and standard deviation ¢ are defined by:

1
T= Z iy 8.1)

1
o=~ Z yi (x; —T)° (8.2)

where 7 goes over the histogram bins, z; is the center of the bin on the x-axis, y; is the sum of the weights in that bin,
and N is the sum of the weights in the histogram.

I’'m being super-formal here, in that I'm referring to y; and N as “sums of weights.” That’s because, as I nofed when
we worked with the Treeviewer, you can assign a weight to the entries as you fill a histogram. You do this by adding
an extra argument to the Fill method. For example, this adds a value to a histogram with the default weight of 1.0:

hist.Fill(value)

while this adds that same value with a weight of 1/error:

hist.Fill(value, 1.0/error)

For all of the histograms in this tutorial, even in the advanced exercises, the default weight of 1.0 is sufficient. In that
case, y; is just the number of times you filled a value in bin ¢ and NN is the total number of times you filled the histogram.

However, there are a number of reasons why you’d want to reweight data as you binned it into a histogram. One example,
which I hinted at above, is when each individual value has an error associated with it. You might want to weight the
values so that those with large errors have little weight and those with small errors have big weights.

The values of Mean and StdDev in the plot do not include any values you filled that fall outside the x-axis of the
histogram. This is easy to test if you have any doubts:

THID hist("hist","test",100,0,3)
hist.FillRandom("gaus", 1000)
hist.Draw()

Alternate gaussian parameterization

In ROOT’s TFormula notation, the “gaus” function refers to Equation (12.1), where A, i, o refer to parameters Py,
P, P, respectively. This is usually fine, except when you want a distribution that’s normalized so that total area under
the gaussian distribution is unity. For that, use “gausn” instead, which uses the probability distribution function in
Equation (12.2).

With this different normalization, Py divided by the bin width becomes the number of “equivalent events” in the
histogram; that’s the “area” of the gaussian distribution expressed in units of events with weight=1:

! “What? There was a version of this tutorial that was more cluttered?” Just for that, you get to work through all the exercises in the Advanced
Exercises and Expert Exercises.

110 Chapter 8. Intermediate Topics

Nevis Labs ROOT tutorial, Release 22.0.2

[1] TFitResultPtr fitResult = hist.Fit("gausn")
[1 Double_t numberEquivalentEvents = fitResult->Parameter(0) /
hist.GetBinWidth(®)

Automatic histogram binning

As you’ve noticed when working with a command like treel->Draw("zv"), ROOT can automatically determine the
appropriate axis range of a plot for you. You can use the same trick. It is:

TH1* hist = new THI1D(...); // define your histogram
hist->SetCanExtend(TH1: :kXaxis); // allow the histogram to re-bin itself
hist->Sumw2(); // so the error bars are correct after re-binning

“Re-binning” means that if a value is supplied to the histogram that’s outside its limits, it will adjust those limits
automatically. It does this by summing existing adjacent bins then doubling the bin width; the bin limits change, while
the number of histogram bins remains constant.

Histogram arithmetic

Suppose you're told to fill two histograms, then perform arithmetic on them; most often this will be adding histograms,
but you can also subtract, multiply, and divide histogram contents. If you do this, call the “Sumw2” method of both
histograms before you fill them; e.g.,

TH1* histl = new THID(...);
TH1* hist2 = new THID(...);
histl->Sumw2(Q);
hist2->Sumw2();

// Fill your histograms
histl->Fill(...);
hist2->Fill(...);

// Add hist2 to the contents of histl:
histl->AddChist2);

If you forget Sumw2, then your error bars after the math operation won’t be correct. General rule: If you're going to
perform histogram arithmetic, use Sumw2 (which means “sum the squares of the weights”’). Some physicists use Sumw2
all the time, just in case.

. Advanced histogramming notes 111

Nevis Labs ROOT tutorial, Release 22.0.2

Directories in ROOT

A question for you: What will happen if you execute the following code in C++?

TFile* file = new TFile("experiment.root");

TH1D* hist = new TH1D("example","example",100,-3,3);
hist->FillRandom("gaus", 10000) ;

file->Close();

hist->Draw();

cl->Draw();

If you’re more accustomed to Python:

import ROOT

file = ROOT.TFile("experiment.root")

hist = ROOT.TH1D("example", "example",100,-3,3)
hist.FillRandom("gaus", 10000)

file.Close()

hist.Draw()

Did you guess that the code will crash? The C++ version will give a segmentation fault; the Python version will
complain that hist is now an object of 'PyROOT_NoneType'. You may have even seen a crash like this before when
working on Exercise 10. You’ve probably already guessed that the cause of the problem are “directories” (since that’s
in the title of this section), but how?

A directory in ROOT (the TDirectory class) is a way of organizing ROOT’s objects. It’s like a directory or folder on
disk, but ROOT’s directories typically hold only ROOT classes: trees, histograms, etc. They’re mostly used to organize
the contents of ROOT disk files (see Exercise 12 for more) but you can define a directory in ROOT’s memory without
writing it to disk, the same way you can have a histogram in ROOT’s memory without it being written to a file.

For the most part, you don’t have to think about directories during an active ROOT session, but the example code above
illustrates an exception. Let’s see why it fails. To see the name of the directory you're using in ROOT, execute the
following in C++:

TDirectory: :CurrentDirectory () ->GetName ()

In Python:
ROOT.TDirectory.CurrentDirectory() .GetName ()
Give it a try: Start an interactive ROOT session and copy-and-paste the above command to see the name of the current

directory (it will probably be RInt or PyROOT). Then copy-and-paste the TFile command in the example code above,
then look at the directory name again.

Note: It looks like when you open a file, ROOT automatically creates a TDirectory with that file’s name and makes
that your default directory. This may remind you a bit of Exercise 3. There you had to be careful about which TCanvas
you wrote to. Here it’s important to understand which TDirectory you’re creating objects in.

Look at the line in the example code that defines a new histogram. In which TDirectory will the histogram be created?
I’'m sure you got the correct answer: experiment.root.

Now execute the example code up to and including the line where we close the file. Once again, look at the directory
name. We're not in experiment.root anymore.

What happens if we try to draw hist now? We’ll get an error. The reason why is that when we closed the file,
ROOT also removed the associated directory in its memory. When the TDirectory “experiment.root” was removed,

112 Chapter 8. Intermediate Topics

Nevis Labs ROOT tutorial, Release 22.0.2

everything in it was removed as well, including hist. The reason for the error when we try to draw the histogram is
that hist refers to a region of memory that doesn’t exist anymore.

The fix for the above example code is simple: swap the TFile and TH1D lines. Then hist is defined in a TDirectory
that isn’t going away.

Note: Again, for the most part you don’t have be concerned with the TDirectory class. However, it’s a good idea to
keep to the practice: Don’t create objects when you have an open file, unless you're going to write that object to that
file.

Perhaps you’re asking yourself: hist was created while experiment.root was open. Does this mean the histogram
was added to the disk file? No, for two reasons: we didn’t use a Write () method on anything, and the file was opened
read-only (see Exercise 10).

. Directories in ROOT 113

Nevis Labs ROOT tutorial, Release 22.0.2

JupyterLab

You learned about Jupyter in The Notebook Server. JupyterLab is the next phase of the Jupyter project. Eventually it
will become the standard Jupyter interface. If you wish, you can experience the future today.

JupyterLab is another step along the road to making Jupyter a full-fledged IDE (integrated development environment)
that can be accessed via a web browser. Here’s an example: When I use Jupyter, typically I see something like this:

ece
< cC @

® & https:/fseligman.notebook.nevis.c

: root-class/

¥ | & Directory test - python X

root-class/

& Diractory test - C++

o @ 1::? Q_ search

x

& Global variables - pythc X

v O oD Pm

& Global variables - C++

E!
x (<]

~ Jupyter

Files Running

Clusters

Select items to perform actions on them.

0 ~ | B/ root-class

& cplusplustest.ipynb

& Directory test - C++.ipynb
& Directory test - python.ipynb
& Figures.ipynb

& Global variables - C++.ipynb
& Global variables - python.ipynb
& jsroot-test.ipynb

& minuit-class-setup.ipynb

& minuit-class.ipynb

& ROOT class.ipynb

& simplify polynomials.ipynb

m

(3 Analyze.C

03 Analyze.C.original

.

Logout

Upload

Name ¥ Last Modified
seconds ago
2 years ago
Running an hour ago
Running an hour ago
2 years ago
Running an hour ago
Running an hour ago
2 years ago
9 months ago
Running 5 meonths ago
ayear ago
9 months ago
4 years ago
2 years ago

4 years ago

Control Panel

Mew = || &

File size

23.7kB

922 B

2.14kB

14.4 kB

1.3 kB

1.66 kB

19.5 kB

2.37kB

332 kB

109 kB

2.18 kB

3.75kB

623 B

3.22kB

A e

Figure 8.2:: A typical Jupyter view.

I prefer to use tabs instead of separate browser windows, but otherwise your experience with Jupyter is probably the
same: the main Jupyter file browser is in one window, while the Jupyter notebooks are each in separate windows of

their own.

This is what I see when I set up the same tasks in JupyterLab:

114

Chapter 8. Intermediate Topics

https://docs.jupyter.org/en/latest/
https://jupyterlab.readthedocs.io/en/stable/

Nevis Labs ROOT tutorial, Release 22.0.2

e0ce JupyterLab
|| €& ¢ o (@ & https:/fseligman.notebook.nevis.c s % | Q search ¥y @ [dﬂ [i41]
|

— JupyterLab x |+

FileJupyterLab ey Run Kermel Tabs Settings Help

| om + b o & A Global variables - C X | [A] Global variables - pr X | [A Directory test - C++ X | [A Directory test - pytk X
> root-class B + ¥ 0T » m C Code ~ ROOTC++ O
£ Name - Last Moc
| A cplusplu... 2 yea I [1): TDirectory::CurrentDirectory()—=>GetName()
| @ & (M| Director... an hot l (const char %) "PyROOT"
| ‘. Dlirectorl.,. el TFilex file = new TFile("experiment.root")
M| Figures.i... 2 yea
o [Global v.. an hol (TFile *) @x7f8f3402be50
* M Global v... an ho! TDirectory::CurrentDirectory()->GetName()
B jsroct-te... 2 yea (const char *) "experiment.root"
M minuit-cl... 9 montt
& M| minuit-cl... 5 montt
A ROOT cl... aye
A simplify ... 9 montt
O - 4 yea
™ Analyze.C 2 yea
[Analyze.... 4 vyea
™ Analyze.h 2 yea
[Analyze.... 4yea
@ Analyze.... 2 yea
[Analyze... 2 yea
[Analyze... 2 yea
@ Analyze... 5 yea
™ Analyze... 2 yea
[Analyze... 2 yea

Figure 8.3:: A typical JupyterLab view.

The entire notebook interface is contained in a single browser window. JupyterLab offers more, such as a text editor
with syntax highlighting and the ability to execute code within Markdown documents. For more information, see the
JupyterLab user’s guide.

If you want to try JupyterLab, the simplest way to switch is to edit the URL of your main Jupyter page. For example,
when I use Jupyter, I see the following URL:

https://seligman.notebook.nevis.columbia.edu/user/seligman/tree

To switch to JupyterLab, change the characters tree to 1ab. For example, what I would use is:
https://seligman.notebook.nevis.columbia.edu/user/seligman/lab

To switch back to Jupyter, select Launch Classic Notebook from JupyterLab’s Help menu.

If you want to always use JupyterLab instead of Jupyter, create or edit the file ~/.jupyter/
jupyter_notebook_config.py and include the following line:

c.NotebookApp.default_url = '/lab'

. JupyterLab 115

https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://seligman.notebook.nevis.columbia.edu/user/seligman/tree
https://seligman.notebook.nevis.columbia.edu/user/seligman/lab

Nevis Labs ROOT tutorial, Release 22.0.2

Dataframes

Using dataframes, each of the Exercises 2 through 9 in this tutorial can be written in 3 lines of code. You don’t need to
create event loops with macros or analysis skeletons; the RDataFrame class and its associated methods handle all of
that for you.'?

The simplest way to view RDataframe is as a way to treat an n-tuple like a spreadsheet. You can derive new columns
and perform operations on a column like counting entries, summing the values, or finding the maximum/minimum
value. You can also perform row-wise operations such as applying a cut (a “filter” in RDataFrame).

Here’s a simple example in Python:

import ROOT

dataframe = ROOT.RDataFrame('treel","experiment.root")

example = dataframe.Define("pt","sqrt(px*px + py“py)")
.Filter("pz < 145").Count() .HistolD("pt")

This defines a dataframe that contains our standard example n-tuple treel from experiment.root. It then applies
the following operations to the n-tuple:

¢ defines a new column, pt, from a formula;

* applies a cut of pz < 145 to all the rows;

* counts the number of rows that pass the cut;

* makes a histogram of pt for all the rows that pass the cut.

To access the value of the number of rows that pass the cut:

print ("The number of events with pz < 145 is",example.GetValue())

To draw the histogram, assuming you’ve defined a suitable canvas:

example.Draw()

For a more complete example, including the equivalent code in C++, copy the Python notebook
RDataFrameExercises.ipynb from ~seligman/root-class and open it via Jupyter. You can also see
other examples in these two equivalent areas (see References):

e The tutorials area $ROOTSYS/tutorials/dataframe;
¢ Dataframe tutorials.
Here are other advantages of RDataFrame:

* It’s easy to set up RDataFrame to use multiple threads, which greatly speeds up execution, though at the expense
of losing control of the order in which n-tuple rows are read/written. You can turn this feature on in Python by
adding the line:

ROOT.ROOT.EnableImplicitMT

In C++:

! The term “dataframe” is also an important component of the Python data analysis package pandas and the R programming language. Don’t
confuse ROOT’s dataframes with pandas’ or R’s. There is some overlap of concepts, but they’re different things with the same name.
2The current RDataFrame class was introduced in ROOT 6.14. From ROOT 6.10 to 6.12, the class was called
ROOT: :Experimental: :TDataFrame. Prior to 6.10, you won’t find dataframes in ROOT at all. Since this is an actively evolving feature
of ROOT, you’ll want to check which version of ROOT your collaboration uses.
The Nevis notebook server uses the latest stable version of ROOT, but collaborations often stick with a particular older ROOT version.

116 Chapter 8. Intermediate Topics

https://root.cern.ch/doc/master/group__tutorial__dataframe.html
https://pandas.pydata.org/docs/getting_started/index.html
https://www.tutorialspoint.com/r/r_data_frames.htm

Nevis Labs ROOT tutorial, Release 22.0.2

ROOT: :EnableImplicitMT();

* Although I only show examples using the n-tuple treel, you can also use other file formats as input to dataframes;
e.g., TTrees and CSV files.

* As noted above, you don’t have to worry about event loops.
* You can easily save modified dataframes (via the Snapshot method) to preserve the work you’ve done.

With all these benefits, why didn’t I just use RDataframe in 7he C++ Path and The Python Path and save you some
of the hassle?

* A teaching reason: To be able to work with dataframes, you need to have some formal understanding of reading
rows via an event loop. It’s hard to do that without seeing loop code at least once.

* Another teaching reason: You need to know how to code loops (and other control structures) in Python and C++
if you’re to use those languages for anything other than ROOT.

* RDataFrame “stages” its tasks using a technique called “lazy evaluation.” This means RDataFrame won’t read
the dataframe from disk until the first actual call that requires using the data to compute a value.

Consider:

countPz = dataframe.Filter("pz < 145").Count()

hist = dataframe.Define('pt","sqrt(px*px + py*py)")
.Define("theta","atan2(pt,pz)") .HistolD("pt")

print ("The number of events with pz < 145 is",countPz.GetValue())

hist.Draw()

When you execute the above code, RDataFrame will “stack” the Filter, Define, and Histo1D actions. It will
only read the n-tuple when it executes countPz.GetValue, which requires a concrete numeric value. As it reads
the n-tuple it will perform all the stacked actions.

This means you want to have a strong sense of what RDataFrame actions are staged and which retrieve values.
Consider the following code, which just moves a single line compared to the above code:

countPz = dataframe.Filter("pz < 145").Count()

print ("The number of events with pz < 145 is",countPz.GetValue())

hist = dataframe.Define('"pt","sqrt(px*px + py*py)")
.Define("theta","atan2(pt,pz)") .HistolD("'pt")

hist.Draw()
If you execute this code, RDataFrame will read the n-tuple to get the value of countPz. It will then stage two
more Define actions and the Histo1D action, and the read the n-tuple again to be able to draw the histogram.

Do things right, and you’ll only read an n-tuple from disk once. Do things wrong, and you could get a slow
program that reads an n-tuple from disk over and over again.

* RDataFrame is reasonably easy to use if all you need are its basic actions. But if you want to do something that
requires you to write custom code, its difficulty can ramp up. The RDataFrame class reference has details.

With all that said, I'm in favor of using dataframes and plan to use RDataFrame in my projects in the future. But this
is definitely a subject in which you can become an expert faster than I can!

. Dataframes 117

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

Nevis Labs ROOT tutorial, Release 22.0.2

More to explore

uproot

From RDataFrames, let’s go to the other end of the spectrum: ROOT I/O without using ROOT. The Python uproot
package reads ROOT files using only Python and numpy. It’s particularly handy if you were already a Python expert
before taking this ROOT tutorial, and would rather not have to touch ROOT again if you can help it.

I’ve installed uproot in the Python 3 installations available at Nevis.

coffea

The coffea package is column-based analysis system specifically designed for high-energy physics. I think of it as a
Python-only equivalent to RDataFrames.

CHECK [T OUT—T MADE A
FULLY AUTOMATED DATA
PIPELINE THAT COLLECTS
AND PROCESSES ALL THE
INFORMATION WJE NEED.

i

15 IT A GIANT HOUSE OF CARDS
BUILT FROM RANDOM SCRIPTS
THAT WILL ALL COMPLETELY

COLLAPSE THE MOMENT ANY
INPUT DOES ANYTHING WEIRD?

L7

IT... MIGHT™ NOT GE.
T GUESS THAT'S SOMETH-

WHOOPS, JUST
COLLAPSED. HANG
ON I CAN PATCH IT

i

Figure 8.4:: https://xkcd.com/2054/ by Randall Munroe. Hopefully your use of ROOT data will be more rational.

118

Chapter 8.

Intermediate Topics

https://github.com/scikit-hep/uproot4
https://coffeateam.github.io/coffea/
https://xkcd.com/2054/

Nevis Labs ROOT tutorial, Release 22.0.2

Installing ROOT on your own computer

Either you have no choice, or you’ve decided to ignore my warning. Here are various methods to install ROOT+Jupyter
on your own computer. They are listed in ascending order of complexity.

Anaconda

Anaconda is a software manager that allows you download and execute packages in your home directory.

If you use the Nevis Linux cluster, then you should consider using environment modules over Anaconda. But if you're
on a different system, or the Nevis environment modules don’t offer the package or version you’re looking for, Anaconda
is a better choice. You can install Anaconda in your home directory so admin access is not necessary. Simply follow
the web site directions to install Miniconda'.

Once you’ve installed Anaconda, you’ll want to include conda-forge for packages such as ROOT. The following com-
mands set it up:

conda config --add channels conda-forge
conda config --set channel_priority strict

At this point, you’ll probably have log off then log in to your computer again to give conda a chance to set up your shell.

To install Jupyter/ROOT, with sufficient features for most of this tutorial:

conda create --name jupyter-pyroot jupyter python root

Note that the name jupyter-pyroot is arbitrary; you can use any name for the conda environment that you wish.

If you continue to work with Jupyter or ROOT after this tutorial, there are standard packages that you’ll probably want
to include:

conda install --name jupyter-pyroot jupyterlab numpy scipy matplotlib

Your working group may use additional packages. For example, the VERITAS group at Nevis might want to use (in
addition to the above):

conda install --name jupyter-pyroot astropy gammapy

You only have to go through the above steps once to define an environment (e.g., jupyter-pyroot). Afterwards, once
per login session, it’s necessary to activate it:

conda activate jupyter-pyroot

Once activated, you should be able to run ROOT by simply typing:

root

You can run jupyter with:

jupyter notebook

Warning:

* Conda takes a long time to run. Be patient. I’ve seen some conda environments take hours to install.

! For this tutorial, the full Anaconda set of packages is not necessary. Note that all the Nevis particle-physics systems already have conda installed.

. Installing ROOT on your own computer 119

https://docs.conda.io/projects/continuumio-conda/en/latest/user-guide/install/index.html
https://conda-forge.org/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Nevis Labs ROOT tutorial, Release 22.0.2

* A conda environment can take up a lot of disk space, since it not only installs the packages you list, but
any other packages that they depend on. On my desktop computer, the minimal Jupyter/ROOT container
described above takes up 3G. This may not seem like much, but summer students at Nevis have a disk quota
of 10G.

It’s possible to run into disk-space problems, especially if you’re sharing disk space with other users, if you
add more packages to your environment, or you define multiple environments for different projects.

* Anaconda changes your shell’s execution environment. It may be incompatible with other environment setups
(such as MicroBooNE’s LArSoft, ATLAS’ Athena, or Nevis’ module load command).

* Your shell’s prompt will be changed by conda. Even when you’re not using conda, the text (base) will
appear at the beginning of the prompt. If this doesn’t bother you, then ignore it. If it does, you can try:

conda config --set auto_activate_base false

You’ll have to log off then log in again to see the change. If you don’t want conda to alter your prompt even
when you’re using an environment, this command will suppress conda’s prompt changes:

conda config --set changepsl False

Tip: One of the most common questions I’'m asked is how to relocate a conda environment to some other location
than one’s home directory:

* As noted above, conda environments take up a lot of disk space. Most research groups have additional disk
storage that’s not part of a home directory; you can read about how the Nevis particle-physics groups handle
their storage in Shared filesystems.

* Many research groups want to share their conda environments, to make sure that everyone is using the same
versions.

For tips on managing disk space for your conda environments, see the Nevis conda wiki page. The conda page on
managing environments is also helpful.

Other packaged distributions
There are other packaging systems than Anaconda; I only emphasized that one because it’s available on Mac OS X,
Windows, and Linux. But if you’re already using a package system, ROOT may be a part of it.

For example, MacPorts has both ROOT and Jupyter. In RHEL-derived Linux systems, the EPEL repository has also
has both ROOT and Jupyter.

The difficulty with some of these packaged distributions is that the ROOT+Jupyter integration might need some work
on your part.

120 Chapter 8. Intermediate Topics

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Conda
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://www.macports.org/
https://fedoraproject.org/wiki/EPEL

Nevis Labs ROOT tutorial, Release 22.0.2

WHATTM TRYING T | [ALL COMPUTERS ARE JUST MAYBE T SHOULD TURN

D0 15 REALLY SIMPLE. | | CAREFULLY ORGANIZED SAND: THIS ONE BACK INTO SAND.
\ EVERYTHIG 15 HARD UNTIL

IT SHOULDNT BE HARD. | [SOMEONE. MAKES IT EASY.

) &

Figure 8.5:: https://xkcd.com/1349/ by Randall Munroe

Docker

While Anaconda is an environment-level container, Docker (and Singularity below) are OS-level containers.” Docker
is probably the best method of running Jupyter+pyroot without having to worry about issues like package compilation,
though you won’t be able to use it to go through The Basics. Its disadvantage is that it requires administrative access
to the host computer system (e.g., your laptop), both to install Docker and to run the Docker container.

The first step is to install Docker. For Mac and Windows systems, use Docker Desktop; there’s a different procedure
needed for Linux systems.

Once Docker is installed and running, you’ll be able to download and run a Docker container:

sudo docker run -p 8080:8080 -v $PWD:/work wgseligman/jupyter-pyroot

(Windows users will probably need to use %CD% instead of $PWD.)
The first time you run this command, it will download a ~2.5GB container. Give it time.

Finally, you’ll see some output. Look at that output carefully, as it will tell you how to access Jupyter via a web browser.
For example, assume the output contains something like this:

To access the notebook, open this file in a browser:
file:///root/.local/share/jupyter/runtime/nbserver-1-open.html

Or copy and paste one of these URLs:
http://649d0c4b4dcl:8080/7?token=97d7242£c79734£1429bc425c627ccc4£586675c0lecdd9c
or
http://127.0.0.1:8080/?token=97d7242£c79734£1429bc425c627ccc4£586675c0lecdd9c

Remember, your complicated token won’t be 97d7242£c79734£1429bc425c627ccc4£586675c0lecdd9c. That was
just the value returned by Jupyter at the time I created this example.

Start up a web browser and visit (in this example):
http://127.0.0.1:8080/?token=97d7242£c79734£1429bc425c627ccc4f586675c01ecdd9c

You’ll see the standard Jupyter home page.

That will get you started. The next few sub-sections are for refining your use of Docker.

2 In contrast to emulators like VMware, which are machine-level containers.

. Installing ROOT on your own computer 121

https://xkcd.com/1349/
https://docs.anaconda.com/anaconda/
https://www.docker.com/
https://www.docker.com/products/docker-desktop
https://runnable.com/docker/install-docker-on-linux
http://127.0.0.1:8080/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c

Nevis Labs ROOT tutorial, Release 22.0.2

Changing the port

Consider the command:

sudo docker run -p 8080:8080 -v $PWD:/work wgseligman/jupyter-pyroot

That first 8080 is the port to use on your local computer. If you want to use a different port on your computer (for
example, you're already using port 8080 for something else), change that first 8080 to a different port. Note that if you
change the port, you’ll also have to change the port in the URL in the output; e.g.,

sudo docker run -p 7000:8080 -v $PWD:/work wgseligman/jupyter-pyroot

means you’ll have to change:
http://127.0.0.1:8080/ ?token=97d7242£c79734£1429bc425c627ccc4£586675c01ecdd9c
to:

http://127.0.0.1:7000/ 7token=97d7242£c79734£1429bc425c627ccc4f586675c01ecdd9c

Changing the directory

Again, consider:

sudo docker run -p 8080:8080 -v $PWD:/work wgseligman/jupyter-pyroot

That $PWD (%CD% in Windows) just means “the current directory.” The execution environment within the container
uses /work for its files; the -v option in the command means “map /work to the current directory in the terminal.” If
you’d like to use a different directory on your computer as the work directory in the Docker container, substitute that
directory for $PWD. For example:

sudo docker run -p 8080:8080 -v ~jsmith/root-class:/work wgseligman/jupyter-pyroot

Changing the container

You can use New -> Terminal within Jupyter to get a shell. Within that shell, you can modify anything within the
container you want; for example, you can use pip3) to install new Python packages or yum) to install new Linux
packages.”

However, any changes you make to the Docker container won’t be automatically saved when you quit the container.
When you next start the container, it will start “fresh.” If you want to save your changes, you’ll have to commit.) them.

For example, assume that you’ve made some changes to your copy of the jupyter-pyroot container. Look up the ID of
the container as assigned by your local docker process:

sudo docker container 1ls
CONTAINER ID IMAGE COMMAND [...]
1105371318e8 wgseligman/jupyter-pyroot "jupyter notebook ..." [...]

Your output will be different; I’ve omitted most of the columns, and you’ll have a different CONTAINER ID. Commit a
revised container using your own image name:

sudo docker commit 1105371318e8 $USER/jupyter-pyroot

3 If you install something of general interest, let me know. I may add it to the main jupyter-pyroot container.

122 Chapter 8. Intermediate Topics

http://127.0.0.1:8080/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c
http://127.0.0.1:7000/?token=97d7242fc79734f1429bc425c627ccc4f586675c01ecdd9c
https://pip.pypa.io/en/stable/user_guide/
http://yum.baseurl.org/wiki/YumCommands.html
https://docs.docker.com/engine/reference/commandline/commit/

Nevis Labs ROOT tutorial, Release 22.0.2

You'll can see your new image with the docker images command. For example, if SUSER is “jsmith”:

sudo docker images

REPOSITORY TAG IMAGE ID [...]

jsmith/jupyter-pyroot latest 97ca601cbf9c [...]
docker.io/wgseligman/jupyter-pyroot latest 16c3bbdc8144 [...]

From that point forward, you’ll probably want to run your new container with your changes:

sudo docker run -p 8080:8080 -v $PWD:/work jsmith/jupyter-pyroot

Docker container notes

I prepared the container wgseligman/jupyter-pyroot to be similar to the environment of the notebook server; for example,
it runs the same version of the OS and of ROOT (as of Dec-2021, that’s CentOS 7 and ROOT 6.24.06).

A little bit web searching will show there are other ROOT containers available. For example:

sudo docker run -p 3000:8080 pedwink/pyroot-notebook

That particular container uses Fedora 28 and ROOT 6.14, and it also offers Python 2 versions of its notebook kernels
(wgseligman/jupyter-pyroot only offers Python 3).

So, if you can’t find the feature you want in wgseligman/jupyter-pyroot, hunt around a bit. It’s probably out there.

. Installing ROOT on your own computer 123

https://docs.docker.com/engine/reference/commandline/images/

Nevis Labs ROOT tutorial, Release 22.0.2

MAN, DOCKER 15 ONCE, LONG AGO I HAD AN APP AND A CALENDAR
BENG USED FOR TWANTED TOUSE | | WEBPAGE THAT I WANTED TO SHOM

EVERYTHING AN OLD TRBLET AS | | SIDE BY SIDE, BUT THE 0S5 DIDNT
T DONTKNOU HOU | | A UALL DISPLAY. | | HAVE SPLIT-SCREEN SUPPORT.

T FEEL ABOUT IT \ 50 T DECIDED T0 BUILD MY OUN APP
(51mrﬁr1r:1

™

T DOUNLOPDED THE SDK | -~ THEN TREAUZED IT | Bur voU NEVER LEARNED
AND THE IDE, REGISTERED WBTEWEPE'ER T0 WRITE SOFTLARE,

P6 ADRELOPER AND | TOGET TUOSYALLER | 1\ 1 1 oo o o
STARTED READNG THE | o v ToceTR, | | TO GLUE TOGETHER STUFF
LANGUAGE'S DOCS, | |\ mar IDMTUHDER&WE

I. OK FAIR.

ON THAT DAY, T
_J ACHIEVED SOFTLARE
ENUGHTENMENT,

Figure 8.6:: https://xkcd.com/1988/ by Randall Munroe

Singularity

If you don’t have admin access to your local computer, or you simply prefer it, you can use Singularity instead. You
still need admin access to install Singularity, or a willing sysadmin to do it for you.*

To download the container and convert it to Singularity’s .sif format:

singularity pull docker://wgseligman/jupyter-pyroot

After some processing, you’ll have the image file jupyter-pyroot_latest.sif. Then you can run Singularity on
that container:

singularity run --bind=$PWD:/work jupyter-pyroot_latest.sif

Note that while you can change the mapping of the /work directory within the container (see the Docker instructions
above), you can’t change Jupyter’s binding to port 8080. This might be a problem if you’re running on a shared computer
system and more than one user wants to run this container at the same time.

4 Singularity is already installed on all the systems in the Nevis particle-physics Linux cluster.

124 Chapter 8. Intermediate Topics

https://xkcd.com/1988/
https://sylabs.io/guides/3.5/user-guide/

Nevis Labs ROOT tutorial, Release 22.0.2

The hard way: compiling ROOT and Jupyter from scratch

I repeat my advice: Don’t.

Obviously, it’s possible to install these packages from scratch; I do it all the time. But it can take a while to learn how to
do it. You’d learn a lot about UNIX, but you’ll be learning neither ROOT nor physics. Don’t expect me to break from

teaching other students about ROOT to teach you about your C++ compiler and the location of your Python distribution
in your directory hierarchy.

Now that you have been warned, here are the places to start:
 Python (if it’s not already installed on your system)
* ROOT
e Jupyter

Please keep the following in mind:

 These are not applications that you can double-click to automatically install. The process requires some knowl-
edge of the command shell.

* Read the installation documentation for each package. Use some thought and initiative. If you aren’t familiar
with UNIX shells before you started this process, you will be once you finish!

* The dockerfile I used to create the wgseligman/jupyter-pyroot container may provide a clue for how to create
your own installation.

WHAT ARE YOO LJORKING ON?

TRYING TO FiX THE PROBLEMS T

CREATED WHEN I TRED To Fix

THE PROBLEMS I CREATED \JHEN

L TRIEDTO FiX THE PROBLEMS
Lz I CREATED LJHEN...

¢)

Figure 8.7:: https://xkcd.com/1739/ by Randall Munroe

. Installing ROOT on your own computer 125

https://wiki.python.org/moin/BeginnersGuide/Download
https://root.cern/install/
https://jupyter.readthedocs.io/en/latest/install.html
https://github.com/wgseligman/docker-jupyter-pyroot/blob/master/Dockerfile
https://github.com/wgseligman/docker-jupyter-pyroot
https://xkcd.com/1739/

Nevis Labs ROOT tutorial, Release 22.0.2

126 Chapter 8. Intermediate Topics

CHAPTER
NINE

ADVANCED EXERCISES

If you still haven’t finished the exercises in The Basics, The C++ Path, or The Python Path, then keep working on them.
The following exercises are relevant to larger-scale analyses but may not be relevant to the work that you’ll be asked to
do this summer.

If this class is your first exposure to programming, then these exercises are hard. The smart-aleck footnotes and xkcd
cartoons aren’t going to change that. Don’t feel bound by the suggested times. Use the references to learn enough about
programming to try to get the next exercise done by the end of the workshop.

You may notice that I don’t provide links to the ROOT classes I talk about in the following sections. That’s deliberate
on my part. I want you to grow used to looking up topics in the ROOT web site (and elsewhere on the web), since that
is what you’ll have to do for real programming tasks.

It’s your choice whether to do the exercises in C++ or Python. I’'m going to discuss them in C++ terms, mainly because
that’s my preferred programming language. Working with pyroot will pose its own set of challenges. You’ll learn
something either way!

Before we get to the exercises, let’s consider some more advanced topics in ROOT.

127

Nevis Labs ROOT tutorial, Release 22.0.2

Working with folders inside ROOT files

Note: As you worked with the TBrowser, you may have realized that ROOT organizes its internal resources in the
form of “folders,” which are conceptually similar to the hierarchy of directories on a disk. You can also have folders
within a single ROOT file, to organize objects within a file.!

Copy the file folders.root from my root-class directory into your own, and use the ROOT TBrowser to examine
its contents.

Note: You’ll see three folders within the file: examplel, example2, and example3. Each of these folders will be the
basis of the next three exercises.

All three of the subsequent exercises will require you to make a plot of data points with error bars. You’ll want to use
the TGraphErrors class for this.”

FRACTION OF AMOUNT OF LOCATION OF
THIS IMAGE BLACK, INK, BLACK, INK, IN
WHICH 15 L HITE, EY PANEL: THIS IMAGE:

= |[F ==

§_=_I(. --/_- l I 1 v il

o4 J (] L)

FRACTION oF b -
THIS IMAGE
WHICH 15 BLACK, | 2 3

Figure 9.1:: https://xkcd.com/688/ by Randall Munroe

Go to the description of the TGraphErrors class. To create a TGraphErrors object, you need to supply some argu-
ments.

Note: These are all different ways to construct a plot with error bars:

e TGraphErrors() — This is used internally by ROOT when reading a TGraphErrors object from a file. You
won’t use this method directly.

e TGraphErrors(Int_t n) — You use this when you just want to supply TGraphErrors with the number of
points that will be in the graph, then use the SetPoint () and SetPointError () methods to assign values and
errors to the points.

e TGraphErrors(const TGraphErrors& gr) — This is called a “copy constructor” in C++, and is used when
you copy a TGraphErrors object. You can ignore this.

e TGraphErrors(const TH1* h) — You use this to create a TGraphErrors plot based on values in a histogram.

! You may already be familiar with HDF5, which is conceptually similar to the approach that ROOT takes for its files: containers for a mixed set
of different types of data within a hierarchy of directories. I haven’t worked with HDFS5 (yet) so it’s hard for me to compare the two.
From scanning through the web sites, it appears to me that HDFS5 stores its datasets as if they were n-tuples. ROOT can store its classes as
structures; e.g., histograms are stored as histograms, as in this exercise.
Of course, I could be wrong! You and I are both learning new things through this tutorial.
2 For Python programmers: Because I have a generous soul, "1l permit you to use matplotlib instead of TGraphErrors for your x-y plots. The
fact that I have no way to stop you has nothing to do with it.

128 Chapter 9. Advanced Exercises

https://root.cern.ch/doc/master/classTGraphErrors.html
https://xkcd.com/688/
https://www.hdfgroup.org/solutions/hdf5/

Nevis Labs ROOT tutorial, Release 22.0.2

Now that I've given you a guide to four ways to construct a TGraphErrors object, you can probably figure out what

the others are: to create a graph from the contents of a file, and to create plots from either float or double-precision. ..
somethings.

Those somethings are containers. We’ll learn about those in the next section.

. Working with folders inside ROOT files 129

Nevis Labs ROOT tutorial, Release 22.0.2

C++ Container classes

In ROOT and C++, there are three general categories of containers you have to know about.

Arrays
Do a web search on “C++ arrays” to learn about these containers.! Briefly, to create a double-precision array of eight

elements, you could say:

Double_t myArray[8];

To refer to the 3rd element in the array, you might use (remember, in C++ the first element has an index of 0):

Int_t i = 2;
myArray[i] = 0.05;

If you’re new to C++, it won’t be obvious that while myArray[2] is a Double_t object, the type of the name myArray
(without any index) is Double_t*, or a pointer to a Double_t.

Getting confused? Let’s keep it simple. If you’ve created arrays with values and errors. ..

Double_t xValue[22];
Double_t xError[22];
Double_t yValue[22];
Double_t yError[22];

...and you’ve put numbers into those arrays, then you can create a TGraphErrors with:

TGraphErrors* myPlot = new
TGraphErrors(22,xValue,yValue,xError,yError) ;

Note: Did you notice a problem with that example? I had to supply a fixed value for the number of points in each
array to make the plot. In general, you won’t be able to do that; in fact, in subsequent exercises you can’t do that.

In C++, one way to get around this problem is to use “dynamic arrays.” I'll let you read about those on the web (search
on “C++ dynamic arrays”), but I’'m not going to say more about them, because I rarely use them.

ROOT’s containers

ROOT’s container classes are described in chapter 16 of the ROOT Users Guide.

Note: Inthe TGraphErrrors constructors, the TVectorF and TVectorD classes are containers for single- and double-
precision real numbers respectively. Click on the class names in the ROOT web site to see the clear and detailed
explanation of how to use them.’

! If you're doing these exercises in Python: You’ll want to read up on numpy arrays instead. Fortunately, numpy arrays will automatically be
converted to C++ arrays when they’re passed as arguments to ROOT methods.
2 If you did this and are puzzled by my description, search the web for the definition of “sarcasm.”

130 Chapter 9. Advanced Exercises

https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Nevis Labs ROOT tutorial, Release 22.0.2

I’1l be blunt here, and perhaps editorialize too much: I don’t like ROOT’s collection classes. The main reason is that
most of them can only hold pointers to classes that inherit from TObject. For example, if you wanted to create a TList
that held strings or double-precision numbers (TString and Double_t in ROOT), you can’t do it.?

You need to know a little about ROOT’s collection classes to be able to understand how ROOT works with collections
of objects. For any other work, I'm going to suggest something else:

C++ Standard Template Library (STL)

Do a web search on ““standard template library”. Skim a few sites, especially those that contain the words “introduction”
or “tutorial”’. You don’t have to get too in-depth; for example, you probably don’t have enough time today to fully
understand the concept of iterators.

Note: Did you guess that STL is my preferred method of using containers in C++?

The Standard Template Library is an important development in the C++ programming language. It ties into the concepts
of design patterns and generic programming, and you can spend a lifetime learning about them.*

Vectors

Note: For the work that you’ll be asked to do in the Advanced Exercises, Expert Exercises, and probably for the rest
of this summer, there’s only one STL class you’ll have to understand: vectors. Here are the basics.

If you want to use vectors in a program, or even a ROOT macro, you have to put the following near the top of your C++
code:

#include <vector>

To create a vector that will contain a certain type, e.g., double-precision values:

std: :vector<Double_t> myVector;

If you want to create a vector with a fixed number of elements, e.g., 8:

std: :vector<Double_t> myOtherVector(8);

To refer to a specific element of a vector, use the same notation that you use for C++ arrays:

myOtherVector[2] = 0.05;

To append a value to the end of the vector, which will make the vector one element longer, use the push_back() method:

myVector.push_back(0.015);

To find out the current length of a vector, use the size() method:

3 In previous versions of this tutorial, I spent a couple of pages discussing object inheritance, and what it means to, e.g., “inherit from TObject.”
The new ROOT web documentation makes it harder to determine object inheritance; you often have to actually look at ROOT’s C++ source code. I
decided to spare you that as much as possible.

4 Tve lost track of the number of your lifetimes I've spent. You're probably tired of the joke anyway.

. C++ Container classes 131

Nevis Labs ROOT tutorial, Release 22.0.2

Int_t length = myVector.size();

Here’s a simple code fragment that loops over the elements of a vector and prints them out.

for (size_t i = 0; i != someVector.size(); ++i) {
std::cout << "The value of element " << 1

<< " is " << someVector[i] << std::endl;

You have a vector, but TGraphErrors wants a C++ array name. Here’s the trick:

// Define four vectors.

std: :vector<Double_t> x,y,ex,ey;

// Put values in the vectors (omitted so you can do it!)

Int_t n = x.size();

TGraphErrors* plot = new TGraphErrors(n, x.data(), y.data(), ex.data(), ey.dataQ));

In other words, if v has the type std: :vector<Double_t>, then v.data() is equivalent to the underlying Double_t
array.

We’re getting closer to being able to tackle the first advanced exercise!

132 Chapter 9. Advanced Exercises

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 12: Create a basic x-y plot (1-2.5 hours)

You're going to re-create that “pun plot” that I showed during my initial talk:'

Number of charged atoms in ’Nights in the Gardens of Spain’

e e e

o S S T— T— T S

nions

P S A— A—— I— —

+IIII| | IIIlIIl’ | IIIIIlIi | IIIIIII| | lIIIIII| | 1 11

10 1 10 10? 10°
t [secs]

Figure 9.2:: Can you spot the pun in this plot? Hint: It involves the composer of a piece of music for piano and orchestra
written in the early 20th century.

Use the histograms in folder examplel from the file folders.root. The y-values and error bars will come from fitting
each histogram to a gaussian distribution; the y-value is the mean of the gaussian, and the y-error is the width of the
gaussian.

Note: You’ve scrolled through web pages reading about abstract concepts and are probably eager to do some work,
but there’s still a couple of things you’ll have to figure out.

First of all, there’s no n-tuple in this exercise. You’ll have to create a ROOT or pyroot macro to create the graph on
your own.” You’ve seen some macros before (remember c1.C?), and you’ll find many more in the ROOT tutorials.

! For Python programmers: if you use an appropriate routine from matplotlib, you’ll have to figure out how to get that mathematical formula to
label the y-axis of the plot. This page may help you get LaTeX expressions into your axes labels.

2 Instead of creating a macro file, you could try typing the commands on the ROOT command line one-by-one. However, unless you have a
shining grasp of ROOT concepts and perfect typing skills, you’re going to make mistakes that will involve many quit-and-restarts of ROOT. It’s

Exercise 12: Create a basic x-y plot (1-2.5 hours) 133

https://matplotlib.org/stable/tutorials/text/usetex.html

Nevis Labs ROOT tutorial, Release 22.0.2

Want to see more examples of using TGraphErrors? Look at the ROOT tutorials directory. The problem is that
there are lots of examples; how do you find those that use TGraphErrors? I copied the ROOT tutorials directory (see
References, and then I used the UNIX grep command:

> cd tutorials

> grep --rl TGraphErrors *

This will list the names of the files that contain the text TGraphErrors. That’s how I found out how to draw a
TGraphErrors plot inside a ROOT canvas.

The UNIX grep command is very useful; type man grep to learn about it.>

You need to figure out how to get the x-values. In this case, it’s relatively simple. There are only six histograms in the
examplel folder. In TBrowser, double-click on the histograms and read the titles. The histograms are numbered from
histO to hist5; you must derive a formula to go from the histogram index to the value of x.

You already know how to open a ROOT file within a macro (it was part of exercise 10), but it’s not obvious how to
“navigate” to a particular folder within a file. Look at the description of the TFile class on the ROOT web site. Is
there a method that looks like it might get a directory?

Note: By now, you’ve probably learned that for ROOT to know where to look to plot, read, or write something, it
has to know where to “focus.” If an object requires focus in some way, it will have a cd() method (short for “change
directory”; remember Exercise 37). Based on that hint, and what you can see on the TFile web page, something like
this might work:

TDirectory* examplel = inputFile->GetDirectory("examplel");
examplel->cd();

The histograms are numbered 0 to 5 consecutively. It would be nice to write a loop to read in “hist0”, “histl”, ...
“hist5” and fit each one. But to do that, you have to somehow convert a numeric value to a text string.

If you know C or C++, you already know ways to do this (and in Python it’s trivial). If all this is new to you, here’s one
way to do it:

#include <sstream> // put this near the top of your macro

// Loop over all possible histogram numbers.

for (Int_t i =0; i !=6; ++i)

{
// Define an "output string stream" object; that is, a variable
// that can be the output of C++-style I/0.
std: :ostringstream os;

// Write the characters "hist" following by the number i
// into the string stream.

0os << "hist" << i;

(continues on next page)

much easier to write and edit a macro (or use a Jupyter notebook).
3 Another tangent:

grep is a program that interprets regular expressions (also known as “regexes”), a powerful method for searching, replacing, and processing text.
More sophisticated programs that use regular expressions include sed, awk, and perl; there are also regex libraries in Python and C++.

Regexes are used in manipulating text, not numerical calculations. Their deep nitty-gritty is rarely relevant in physics. On the other hand, I use
them all the time; e.g., searching the ROOT tutorials for hints.

Regular expressions are a complex topic, and it can take a lifetime to learn about them. (You may be tired of the joke, but I'm not!)

There’s a cool xked cartoon about regular expressions. It’s too big to put into a footnote, so you’ll have to click on the link yourself: https:
/Ixked.com/208/

134 Chapter 9. Advanced Exercises

https://matplotlib.org/stable/tutorials/text/usetex.html
https://www.guru99.com/linux-regular-expressions.html
https://www.gnu.org/software/sed/
https://www.tutorialspoint.com/awk/index.htm
https://www.perl.org/docs.html
https://xkcd.com/208/
https://xkcd.com/208/

Nevis Labs ROOT tutorial, Release 22.0.2

(continued from previous page)

// Extract the text string from the string stream and save
// the result in a ROOT-style string.
TString histogramName = os.str(Q);

// ... do what you need to with histogramName

There are other problems you’ll have to solve:

Now

How do you read a histogram from a file? Or the more general question is: How do you get a ROOT object from
a file?

Hint: How do you “find” an object in a TFile? (Once you’ve figured this out, look through the tutorial files
for more clues.)

Once you fit a histogram to a gaussian distribution, how do you get the mean and width of the gaussian from the
fit?

Hint: The TH1 page lists the method you’ll need.
In Figure 9.2, the x-axis is logarithmic. How do you make that change?

Hint: Remember how you found out how to label an axis?

Speaking of axis labels, how do you put in d(”F";Z?';a) ?

Hint: Look up TLatex in the ROOT web site. You don’t have to declare a TLatex object; just put the text
codes into the axis label and ROOT will interpret them.

How do you get the marker shapes and colors as shown in the plot?
Hint: Some looking around the ROOT web site should give you the answer.

you can get to work!

. Exercise 12: Create a basic x-y plot (1-2.5 hours) 135

Nevis Labs ROOT tutorial, Release 22.0.2

“T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LIRITE A PROGRAM RUTOMATING IT!™

THEORY:

TME

Figure 9.3:: https://xkcd.com/1319/ by Randall Munroe

136 Chapter 9. Advanced Exercises

https://xkcd.com/1319/

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 13: A more realistic x-y plotting task (1-2 hours)

Note: It took several pages to set up the previous exercise. It only takes one page to describe this one. Don’t be fooled:
this exercise is harder!

Take a look at folder example2 in folders.root. You'll see histograms and an n-tuple named histogramList.
Right-click on histogramList and Scan the n-tuple. On the ROOT text window, you’ll see that the n-tuple is a list
of histogram ID numbers and an associated value.

Once again, you're going to fit all those histograms to a gaussian and make an x-y plot. The y values and error bars
will come from the fits, as in the previous exercise. The x values will come from the n-tuple; for example, the value of
x for histogram ID 14 is 1.0122363.

I'1l let you pick the axis labels for this graph; don’t make the x-axis logarithmic.

SCENCE TiP: LOG SCALES ARE FOR QUITTERS WHO CANT
FIND ENOUGH PAPER TOMAKE HEIR POINT AROPESRLY,

Figure 9.4:: https://xkcd.com/1162/ by Randall Munroe

Note: You've probably already figured out that you can use MakeSelector on the histogramList n-tuple, like you
did before. The challenge will be putting together the code inside the Process method of the new class with code from
the previous exercise.

In the previous exercise, perhaps you hard-coded the number of histograms in the folder. Don’t do that here. You could
get the number of histograms from the number of entries in the n-tuple.

Or maybe that’s not a good idea; what if there were an entry in the n-tuple but no corresponding histogram? Keep a
separate count of the number of “valid” histograms you’re able to read. This means you’ll have to check if you’ve read
each histogram correctly. C++ tip: If a ROOT operation to read a pointer fails, that pointer will be ser fo NULL.

. Exercise 13: A more realistic x-y plotting task (1-2 hours) 137

https://xkcd.com/1162/

Nevis Labs ROOT tutorial, Release 22.0.2

138 Chapter 9. Advanced Exercises

CHAPTER
TEN

EXPERT EXERCISES

You’ve gotten this far. That’s impressive. Now let’s see how good you really are.

As I try to say during my introductory lecture to this tutorial, skill as a computer programmer is poorly correlated with
skill in physics. But if you’re someone who can do both, you’ve got an extraordinary career ahead of you!

139

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 14: A brutally realistic example of a plotting task (1-2 hours)

Now take a look at folder example3. You probably already looked in there and were overwhelmed with the number of
histograms.

Here’s the task: it’s another x-y plot, with the y values and error bars from fitting the histograms. You only want to
include those histograms whose names begin with “plotAfterCuts”; the other histograms you can ignore.

The x values come from the histograms themselves. Double-click on a few histograms to plot them. You’ll see that the
x values are in the titles (not the names!) of the histograms.

Note: You’ll be able to re-use code you developed for the previous two exercises. There are some new problems to
solve: how to get the list of all the histograms in the example3 folder, how to test if a histogram’s name begins with
“plotAfterCuts”, and how to convert a histogram’s title from a string into a number.

Let’s think about the easier problems first.

If you’re fairly familiar with C or C++, you probably already know how to convert strings into numbers. If you’re not,
then I suggest you take a look at the description of the TString class on the ROOT web site; the Atof () method looks
interesting.

The TString class is pretty good about converting string formats implicitly.! You probably already figured out how
to look up getting the title from a histogram. The method returns const char * but something like this will work:

TString title = histogram->GetTitle(Q);

What about testing if the text in a TString begins with “plotAfterCuts”? Take another look at the TString web page.
Is there a method that looks like it might help you with that test?

The next problem is trickier: How do you get a list of objects in a directory?”

By now you’ve got the hang of the above hint: I want to “Get” a “List” of objects in a directory. When I worked on this
problem, I went to the TFile web page and looked for methods with names that began with “GetList”. Nothing there,
so I went to the parent class TDirectoryFile, continuing to search for “GetList.” Nothing there, so I went to its parent’
TDirectory. I found something, clicked on the name of the method. .. then pounded my head against the desk.*

I finally got the answer by using the UNIX grep command to search through the ROOT tutorials directory for the text
“GetList”. There are many files there with a “GetList...” call, but one file name stood out for me. Since I had read the
TList web page first, I could see that the answer was there. But it’s sloppily written and you’ll have to change it.

! Yet another digression: There are three main ways of handling strings in ROOT/C++:
* The original way from the older language C, as an array of char: char oldStyleString[256];
* A newer way, added to the C++ language: std::string newStyleString;
* The ROOT way: TString rootStyleString;

Which is better? My attitude is that none of them is best. In a ROOT program, I tend to use TString; if my program doesn’t use ROOT, I use
std::string for string variables and arrays of char for constant strings.

Until recently, C++ didn’t have the built-in text manipulation facilities of languages like perl or Python. This can be important in a physics analysis
procedure; while your calculations are based on numbers, manipulating files or program arguments can be based on strings. A language update,
C++11, has a “regex” library for handling regular expressions; this can also be found in ROOT’s cling.

In Python, all this is much simpler. (Hint: import re)

2 For Python programmers: This discussion of object inheritance is relevant to you as well, but you deal with it in a different way. Look up the
Python type() and isinstance() functions.

3 TFile’s “grandparent.”

41 suppose the programmer thought that they would write the documentation for GetList later.

Here’s a tip for writing code that will make you a hero: “later” does not exist. (As of 2016, the ATLAS collaboration collected over 35 fb—1 of
data, and they still haven’t discovered evidence of “later”!) Treat the comments as part of the code-writing process. If you have to edit the code, edit
the comments.

Yes, I know it’s a pain. But pounding your head on a desk is a bigger pain. It’s the biggest pain of all when you realize that you wrote the code
yourself six months ago, have completely forgotten what it means, and must now spend an hour figuring it out. It would have taken five seconds to
write a comment.

140 Chapter 10. Expert Exercises

Nevis Labs ROOT tutorial, Release 22.0.2

To understand what you’d have to change, you’ll have to know a little bit about class inheritance. In C++, the practical
aspect of class inheritance is that you can use a pointer to a base class to refer to a derived class object; if class Derived
inherits from class Base, you can do this:

Base* basePointer = new Derived();

If that’s a little abstract for you, consider this in terms of the classes with which you’ve worked. Any of the following
is correct in C++:°

TH1D* doublePrecisionHistogram = new THID(...);
TH1* histogram = new THID(...);
TObject* genericRootObject = new THID(...);

Why does this matter? Because ROOT does not read or write histograms, functions, n-tuples, nor any other specific
object. ROOT reads and writes pointers to class TObject*. After you read in a TObject*, you’ll probably want to
convert it to a pointer to something useful.

In C++, the simplest way to attempt to convert a base class pointer to a derived class pointer something like this
(assuming genericRootObject is a TObject*):

TH1* histogram = (TH1*) genericRootObject;
if (histogram == NULL)

{
// The genericRootObject was not a THI1*
}
else
{
// The genericRootObject was a THI1*; you can use it for things like:
histogram->FillRandom("gaus", 10000) ;
histogram->Draw() ;
}

If I didn’t put that test in there and just tried histogram->FillRandom("gaus",10000), and histogram==NULL,
then the program would crash with a segmentation fault.

OKAY, HUMAN. YOU KNOW WHEN YOORE | AND SUCDENLY You | WELL THATS WHAT A
HUM? 9\ FALLING ASLEER AND NISSTEP, STUMBLE, | SEGFAULT FEELS LIKE.
tUHY YOU IMAGINE YOURSELF | AND JOLT AWAKE? 3
BEFORE Yo WALKING OR YEAHI DOUBLE - CHECK YoUR
HIT (OMPILE, A SOVETHING, : F DAMN POINTERS, OKAY?

1 =80 }.1

Figure 10.1:: https://xkcd.com/371/ by Randall Munroe

Note: Why did I write such a long note to go over such a dry topic?

* Understanding object inheritance makes it clear why the macros that ROOT automatically creates for you use
pointers, why ROOT’s container classes only contain TObject®, why the default canvas is a TCanvas*® c1, etc.

5 How do you figure out which classes derive from where? The only way to find out in the current ROOT documentation is to search ROOT’s
C++ source code, which you can browse via the links to the .h files in the class’ web page. Welcome to the wild adventure hunt that is ROOT!

6 If you haven’t encountered a segmentation fault yet in this tutorial, you’re either very lucky or very good at managing your pointers. Now you
know why it happens: someone tried to call a method for an object that wasn’t there.

. Exercise 14: A brutally realistic example of a plotting task (1-2 hours) 141

https://xkcd.com/371/

Nevis Labs ROOT tutorial, Release 22.0.2

* It’s so when you see a line like this in the ROOT tutorials, you have an idea of what it’s doing: using a TKey to
read in a TObject*, then converting it to a TH1F*:

h = (TH1F*)key->ReadObj();

Now you should have an idea of how to edit this line to do what you want to do... and how to check if what you’ve
read is actually a histogram or is some other object that was placed inside that folder.

142 Chapter 10. Expert Exercises

Nevis Labs ROOT tutorial, Release 22.0.2

Exercise 15: Data reduction (1-2 hours)

Note: Up until now, we’ve considered n-tuples that someone else created for you. The process by which a file that
contains complex data structures is converted into a relatively simple n-tuple is part of a larger process called “data
reduction.” It’s a typical step in the overall physics analysis chain.

As T implied in the first day of this tutorial, perhaps you’ll be given an n-tuple and told to work with it. However, it’s
possible you’ll be given a file containing the next-to-last step in the analysis chain: a file of C++ objects with data
structures. You’d want to extract data from those structures to create your own n-tuples.'

Copy the files whose names contain “Example” from my root-class directory:

> cp ~seligman/root-class/*Example* $PWD

The file exampleEvents.root contains a ROOT tree of C++ objects. The task is to take the event information in
those C++ objects and reduce it to a relatively simple n-tuple.

First, take a look at ExampleEvent.h. You're not going to edit this file. It’s the file that someone else used to create
the events in the ROOT tree. If you're given an ExampleEvents object, you can use any of the methods you see to
access information in that object; for example:

ExampleEvent* exampleEvent = 0;
// Assume we assign exampleEvent somehow.
Int_t numberLeptons = exampleEvent->GetNumberLeptons();

For this hypothetical analysis, you’ve been told that the following information is to be put into the n-tuple you’re going
to create:

e the run number;

* the event number;

* the total energy of all the particles in the event;

* the total number of particles in the event.

* aboolean indicator: does the event have only one muon?

* the total energy of all the muons in the event;

¢ the number of muons in the event;

The task is to write the code to read the events in exampleEvents.root and write an n-tuple to a different file,
exampleNtuple.root.

Note: After what you’ve done before, your first inclination may be to open exampleEvents.root directly in ROOT
and look at it with the TBrowser. Try it.

It doesn’t fail, but you’ll get an error message about not being able to find a dictionary for some portions of the
ExampleEvent class.” I noted this earlier: it’s possible to extend ROOT’s list of classes with your own by creating a

LIf you’re trying to get through the advanced exercises using Python, this one may stump you; it certainly stumps me. I know of no simple way
of loading a C++based ROOT dictionary using Python. Something like this may be a start:

ROOT.gInterpreter.ProcessLine('#include "ExampleEvent.h"')
ROOT.gSystem.Load("./libExampleEvent.so")

2 If you didn’t get such a message, then you probably copied my entire root-class directory to your working directory. That’s OK, but you
might want to temporarily create a new directory, go into it, start ROOT, and open the file just so you can see the error message. That way you’ll
know how it looks if you have a missing-dictionary problem.

Exercise 15: Data reduction (1-2 hours) 143

Nevis Labs ROOT tutorial, Release 22.0.2

custom dictionary. Only classes that have a dictionary defined can be fully displayed using the ROOT browser.

Try to see how much of the ExampleEvent tree you can see without the dictionary. Then restart ROOT and type the
following ROOT command:

[1 gSystem->Load("libExampleEvent.so");

This causes ROOT to load in the code for a dictionary that I've pre-compiled for you.® Now you can open the

exampleEvents.root using a TFile object and use the ROOT browser to navigate through the ExampleEvent
objects stored in the tree.

As you look at the file, you’ll see that there’s a hierarchy of objects. There’s only one object in the file,
exampleEventsTree. Inside that tree, there is only one “branch”, exampleEventsBranch.

That’s a bit of a clue: a ROOT n-tuple is actually a TTree object with one Branch for every simple variable.

At this point, you could use MakeSelector () to create a ROOT macro for you, but I suggest that you only do this to
get some useful code fragments to copy into your own macro.”*

Hint: Some additional hints:
* The first line of your ROOT macro for this exercise is likely to be the library load command above.

* If you're writing a stand-alone program, instead of loading the library you’ll have

#include "ExampleEvent.h"

and include 1ibExampleEvent. so on the line you use to compile your code.

* Look at the examples in the SROOTSYS/tutorials/tree directory, on the TTree web page, and in the macro you
created with MakeSelector (if you chose to make one).

* Yes, the ampersands are important!
One more hint:

How do you tell if a lepton is a muon or an electron? I’m not talking about their track length in the detector, at least
not for this example. I'm talking about what indicator is being used inside this example TTree.

There’s a standard identification code used for particles. The Particle Data Group developed it, so it’s called the “PDG
code”.? There are methods in ExampleEvent that return this value (e.g., LeptonPDG). For this exercise, these codes
will be sufficient:

3 This library may not work if you’re on a different kind of system than the one on which I created the library. If you get some kind of load error,
here’s what to do:
Copy the following additional files from my root-class directory if you haven’t already done so:

LinkDef.h
ExampleEvent.cxx
BuildExampleEvent.cxx
BuildExampleEvent.sh

Run the UNIX command script with:

> sh BuildExampleEvent.sh

This will (re-)create the 1ibExampleEvent shared library for your system. It will also create the program BuildExampleEvent, which I used
to create the file exampleEvent.root.

If you’re running this on a Macintosh, the name of the library will be 1ibExampleEvent.dylib; that’s the name to use in the gSystem->Load()
command in the Mac version of ROOT.

4 Why don’t I want to you use MakeSelector here? The answer is that some physics experiments only use ROOT to make n-tuples; they don’t
use it for their more complex C++ classes. In that case, you won’t be able to use MakeSelector because you won’t have a ROOT dictionary. It’s
likely that such a physics experiment would have its own I/O methods that you’d use to read its physics classes, but you’d still use a ROOT TTree
and branches to write your n-tuple.

5 If you'd like to see them, here’s a PDF file with a complete list of codes.

144 Chapter 10. Expert Exercises

http://pdg.lbl.gov/2002/montecarlorpp.pdf

Nevis Labs ROOT tutorial, Release 22.0.2

Particle | PDG Code
e~ 11

et -11

W 13

ut -13

If the sign of the PDG codes for leptons seems puzzling to you, recall that under the usual particle-physics nomenclature,

electrons are assigned a lepton number L of +1, positrons are assigned L=-1, and so on.

Extra challenge

Use the RDataFrame class to create the output n-tuple, instead of manually fiddling with TTree and branches. One

aspect will be a trifle easier: Using the .Define method in RDataFrame is easier than defining a branch.

The harder part will be figure out how to pass a calculation to Define to calculate each column in the n-tuple. You’ll
have to learn how to create (in the words of the ROOT web site) a “function, lambda expression, functor class, or any

other callable object”, none of which I’ve mentioned so far in this tutorial.

Get to work!°

6 In the time since I constructed this exercise in the mid-2000s, a new class has been added to ROOT: TNtuple. It may make the process of

writing n-tuples easier for you. Take a look!

Exercise 15: Data reduction (1-2 hours)

145

https://root.cern.ch/doc/master/classTNtuple.html

Nevis Labs ROOT tutorial, Release 22.0.2

PARTICLE PROPERTIES IN PHYSICS

ELECTRIC -1 O +#
Cf.lPRGE g

MASS | Q. e .2,
SPIN NUMBER |] # O % |

<

FLAVOR | (MISC. QUANTUN NUMBERS)

R G
CHCER"SER >1< (QUARKS ONLY)

MooD @ @ @ @ @

GOOD-EVIL,
AUGNMENT LAFUL-CHAOTIC

HTPONTS | Q. ., ...,
RATING | Y Y et
STRING WPE | BYTESTRING-CHARSTRING

BATTING | 0 joox
AVERAGE | &>

PROOF | 200
Hear | ¢ ¢ @ ¢

STREET VALUE | 40,4100 200

(THIS ALREADY HAS LIKE

20 DIFFERENT (ONFUSING
MEANINGS, S0 IT PROBABLY
MEANS SOMETHING HERE, TOO)

ENTROPY

Figure 10.2:: https://xkcd.com/1862/ by Randall Munroe

146 Chapter 10. Expert Exercises

https://xkcd.com/1862/

CHAPTER
ELEVEN

WRAP-UP

The last four exercises that make up Advanced Exercises and Expert Exercises are difficult. I chose those tasks because
they represent the typical kind of work that I find myself doing whenever I use ROOT: pulling together documentation
from different places, translating the examples into the work I’m actually doing... and pounding my head against the
desk whenever there are no comments, or I get yet another segmentation fault.'

If you’d like to see how I solved those exercises, you’ll find my code in PlotGraphs.C (for exercises 12-14) and Mak-
eNtuple.C (for exercise 15).2

Good luck!’
YOU KNOW THIS METAL T SPEND MOSTOF MY UFE | | BUT TODAY, THE PATTERN
RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | OF LIGHTS 15 AL WROMG!
UTTE LIGHTS? THE. PATTERN OF LIGHTS 3 OHGOD! TRY
SOUNDS ITSNOT BUTTONS!

il

Figure 11.1:: http://xkcd.com/722 by Randall Munroe

! Now you know the reason for my going bald!
2 Maybe you’re thinking, “Wow! It’s lucky I went to the end before I started doing any of this stuff!” Take my word for it: reading my solutions
is not a substitute for working through the problem yourself.
For example, I wrote those solution in the mid-2000s. Since then there have been improvements in ROOT, C++, and Python. You can do better
than I did!
3 Total lifetimes used up: up to ten, depending on if you chose to learn both ROOT/C++ and pyroot, which tangents you took, how much LaTeX
you learn, if you read the section on statistics, and whether you choose a career in physics. I generously give any remaining lives back to you.

147

http://xkcd.com/722

Nevis Labs ROOT tutorial, Release 22.0.2

148 Chapter 11. Wrap-up

CHAPTER
TWELVE

APPENDIX

If you ever read Lord of the Rings, you know that about a third of the third volume, The Return of the King, consists
of appendices to enhance the story you’ve just read.

The purpose of the following is to help enhance your physics work this summer. If you’ve gotten through 7he C++
Path or The Python Path, you’ve got some time left, and you don’t feel ready to proceed to the Advanced Exercises,
then feel free to browse through the following.

There’s not much about ROOT itself, but these sections may help better prepare you for your upcoming research.'

! Unlike the appendices in The Lord of the Rings, you're not likely to learn much about Hobbits or the Downfall of Niimenor. Sorry, but there
are limits, even for me.

149

https://www.goodreads.com/book/show/33.The_Lord_of_the_Rings
https://www.goodreads.com/book/show/838729.The_Return_of_the_King

Nevis Labs ROOT tutorial, Release 22.0.2

A too-brief and too-long introduction to statistics

This section is for those students who have had little or no exposure to statistics before taking this tutorial.

Strictly speaking, this section has nothing to do with ROOT per se; that’s part of why it’s “too long.” However, I was
asked to include something on these topics to hopefully give you a head start as you get involved with the research
you’ll do this summer.'

My goal is to explain the terms of “physicist jargon” you see in the topic headers.”

Gaussian

The gaussian1 function (sometimes called the “normal distribution™ or “the bell curve,” though both terms are a bit
inaccurate in this case) is a standardized curve that frequently comes up in physics; for example, in random processes
such as particle decay. The formula for the gaussian function is:

flo) = e 3(5)° (12.1)

* 1 is the mean of the distribution. (For a gaussian, the mean, mode, and median are the same.’)

* o = the standard deviation; it’s related to the “full width at half maximum” (FWHM) of the curve by FWHM =

20v2In2 =~ 2.350.

» e = Euler’s constant, a transcendental number that occurs often in calculations that relate to growth and increase.
It’s formally defined as lim,, o0 (1 + 2)".

If you want to work with the normal distribution as a “probability density function” then you’ll need to include a
normalization so the integral [~ N (z)dx =1.

Nz :p,o)= ﬁe*%('f) (12.2)

r—

1 2
Without the normalization factor, the maximum value (‘“amplitude”) of Ae™ 2 (5%4) s A, which is easy to read from
a graph.”

! The full subject of statistics is deep and beautiful, and you can spend a lifetime. .. well, you know the rest.

2 In this discussion, when I say “physicists do this” or “physicists do that,” it’s not exclusive. Other fields of study use the same terms. However,
since I mostly hang out with physicists and not cultural anthropologists or meteorologists, I’ll only speak for the folks I know.

11 should call it the Gaussian function since it’s named after Carl Friedrich Gauss, but like many physicists I'm too lazy to hit the SHIFT key.

2 This time, Il restrict the related xked cartoon to a link: https://xked.com/2435

3 When I was a graduate student, I showed a plot very much like this one at one of my first talks to the rest of my experiment’s group. The
spokesman thundered “Take that off the screen!” He felt that the information it conveyed was so trivial that I was insulting everyone’s intelligence.
Don’t make the same mistake that I did!

On the other hand, if you feel that your intelligence has just been insulted, you may be ready to be an experiment spokesperson. Quick, write a

proposal!

150 Chapter 12. Appendix

https://xkcd.com/2435

Nevis Labs ROOT tutorial, Release 22.0.2

1.0 —
o 27) A=1.0fOr ==
fix) =Ae "=
0.9 H)
— A=1.0,u=0.0,0=10
osl i A = 05, M= 10, g= 20
©e A=0.4, u=-3.0,0=0.5
—_— A=02 u=0.0,0=50
0.7 —=
0.6 —
0.5+ iy,
=-3.0 for ssss o ",
0.4 il
03 — : o= 2_0 for i
....... FWHM=2350 _\............%,
0.2+
01+
0.0 ™ R W
-5 -4 -3 -2 -1 0 1 2

P PTTTTITTITIT [TTTTTTTITII [FPTTTTTIT T ! |

Figure 12.1:: A few gaussian functions with annotations.

I’ll repeat something I say in The Basics: You see the word “gaussian” a lot in this tutorial, because it’s an easy
distribution to work with as I prepare plots and such. There are many other probability distributions and functional
forms that are used in physics. For example, there’s the Landau distribution, which describes energy loss of ionizing

particles.

Gaussian distributions come up a lot because when you’re making an observation that depends on the combination of
many underlying probability distributions, the combination generally tends towards a gaussian. But don’t start believing

that everything is normal!

THSSUKS |

THE MEDIAN FIRST MARRIAGE
AGE 15 26. THE PooL OF
SINGLES 15 SHRINKING.

TM RUNNING{ ACTUALLY;
OUT OF TIME ANOT QUITE.

B

YES, CLDER SINGLES ARE RARER. BUT
AS YOU GET OLPER, THE DATEABLE AGE
RANGE GETS WIDER. AN 18-YERR(OLD's
RANGE 15 16-22, WHERERS A 30 YERR-
OLDs MIGHT BE MORE LIKE ZZ2-Hé.

T DI SOME ANALYSIS OF
THIS WITH CENSUS BUREAU
NUMBERS JUST LAST WEEKEND:
YOUR: DATING RooL ACTUALLY
GECWS UNTIL MICOLE AGE.

DID YOUR ANALYSIS

SAY ANYTHING ABOUT {* come on.

THE DTG PROSPETES | e
SOMEWHERE

WEEKENDS AT HOYE

MAKING GRAPHS?

Figure 12.2:: https://xked.com/314/ by Randall Munroe

. A too-brief and too-long introduction to statistics

151

https://xkcd.com/314/

Nevis Labs ROOT tutorial, Release 22.0.2

Poisson distributions

Let’s take a brief look at one alternative distribution since it will come up later: the Poisson distribution, which models
the number of discrete events seen in an interval of time or space; for example, radioactive decay. It’s given by:

k,—X
P(k;)\) = % (12.3)

where k is the number of occurrences you might measure in an interval, A is the mean number of events you’d expect
see per interval, and P(k; \) is the probability of seeing k events given a mean of .

This plot may help you visualize what’s going on:

040 T T T T T
0.35
0.30 1
< 0.25

I L
o 0.20
%015 F

0.10 F
0.05 |

0.00

0 5 10 15 20
k

Figure 12.3:: Examples of Poisson distributions for a few values of . Source: Skbkekas under the CC BY 3.0 license

For example, if you’re running an experiment whose observations follow a Poisson distribution, and the mean number
of events you’d expect to see is A=4, then the probability of seeing exactly 4 events in the interval is about 0.20.

You may have noticed that for A=10, the curve looks like a gaussian. In fact, a gaussian can be defined as the limit for
large \ of a Poisson distribution.’

As it happens, the particle-physics experiments that I've worked on have typically involved tens to hundreds of thou-
sands of events, even after applying cuts,”> so I've usually worked with gaussian probability distributions. If you’re
working on an experiment with infrequent events in space or time, then you’ll become more familiar with the Poisson
distribution.

Let’s keep that in mind as we move on to discussing fitting a function to data in the next section.

! You may also have noticed that I'm being inconsistent in my capitalization: I’m capitalizing Poisson (after Siméon Denis Poisson) but I'm
leaving gaussian in lower case. I’'m going to say that’s because Gauss is a name but gaussian is an adjective applied to a mathematical function. If it
were a “poissonian distribution” then I'd drop the lower case on that adjective too.

2 If you don’t know what “applying a cut” means yet, see either the C++ explanation or the Python explanation.

152 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

RSSO \
lnolioN.

'm G PO
\Hf‘

ki

DY
o Hhirm- kurmt‘;{:?
O/hh'? uu)ml)f’.i

Rewse L otlly
a ?mssc:m di ﬁn\aﬁioﬂ

han zero.

Figure 12.4:: https://xkcd.com/12/ by Randall Munroe. This early xkcd cartoon is more subtle than usual. If you're
having trouble figuring it out, take another look at the above equation and plot.

Chi-squared

It’s rare in physics to perform an analysis task and see nice smoot
you make histograms of values, as in my introductory talk. Such

h curves like those in Figure 12.1. For the most part,
a plot might look something like this: '

! If you jumped here from The Basics, you're going to make your own plots similar to the next couple of figures.

. A too-brief and too-long introduction to statistics

153

https://xkcd.com/12/

Nevis Labs ROOT tutorial, Release 22.0.2

Measurements from my experiment

hist
L Entries 5000
= Mean 5.015
1201— Std Dev 1.932

100—

Number of observations

D
o
|

©
o
III|
_—
-
—_—
R S
PR —
—_—
R S—
R S
P S—
PR S—
_
RS E—
RS E—
R
_
R B
—_—
PR —

40— J{ Wl PHUlH

o by
ﬁﬂjﬁﬁf I | | | | | | i |+ HJ[J[HJFH
00 | 1 1 | I | 2 111 3 1 11 1 4 1 11 1 5 1 11 1 6 11 1 7 1 11 1 8 '\lﬂ 11 9 11 1 |t1 O

Figure 12.5:: A typical histogram that you might create during a data analysis.

Suppose you want to test whether the above distribution of data was generated according to a gaussian distribution.
The usual test in physics is to perform a “fit”: fiddle with the gaussian’s parameters A, u, and o (typically called

9%

“amplitude”, “mean”, and “sigma” respectively) until the function best fits those data points.

The mathematical method for performing such a fit starts with computing a quantity denoted as 2, pronounced “chi-
squared.”” For a general 1-dimensional function with parameters pg, p1, ps . . . p; to be fitted to a 1-dimensional his-
togram, this is:

. — .. . 2
oy e in) 124

where:
* ¢ means the ¢-th bin of the histogram (more generally, the i-th data point you’ve gathered).
* y, means the data in (or the value of) the ¢-th bin of the histogram.
* ¢; means the error in the i-th bin of the histogram (i.e., the size of the error bars).

* f(z;p;) means to compute the value of the function at z; (the value on the z-axis of the center of bin ¢) given
some assumed values of the parameters pg, p1,p2 . . . pj.

The process of “fitting” means to test different values of the parameters until you find those that minimize the value of

X2

2 That’s “chi” with a hard ch, as in Bach or chutzpah; the word rhymes with sky. If you pronounce it “chee” with a soft ch, folks at Nevis will
think you’re talking about a scientist named Qi.

154 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

This probably sounds quite involved. Indeed, it can be. Fortunately, physicists and mathematicians have developed
many tools to relieve the computational tedium of much of this process. As you will learn in 7The Basics (if you jumped
here) or learned in The Basics (if you're reading this tutorial from beginning to end), fitting the histogram in Figure
12.5 to a gaussian distribution is a matter of a couple of mouse clicks:

Measurements from my experiment

hist
Entries 5000

22} Mean 5.015
c -
S B 2 Inat 04.56 /7
S 120— woan " 5055 » 0030
E I Sigma 1.99 + 0.02
8 -
O —
5 100— I
o B
0
g -
> 80_—

60—

40—][) 1l

20— H 11 J[

0 |r|'|||

0 1 2 3 4 5 6 7 8 9 10
Measurements

Figure 12.6:: It looks like a gaussian function is a reasonable assumption for the underlying distribution of our data. In
this case, I knew this to be true because of how I generated the “data” in the histogram. You (will do)/(have done)/(will
have done) the same thing in The Basics.

Since you’re a scientist, you may ask “How does ROOT fit functions?” The answer has to do with a general mathematical
technique called “function minimization”; in this case, minimizing the value of X2~ With interactive ROOT, you can fit
1-, 2-, and 3-dimensional histograms to basic distributions with a few mouse clicks. For more complex minimization
tasks, you have to write your own functions to be minimized; there’s a brief example of this in 7he Basics.’

I should mention that you don’t always fit a function to your data using a xZcalculation. That’s good enough if the
distribution of your data within each individual bin is gaussian; it’s reasonably true for the fits associated with this
tutorial.

However, in physics you can have data vs. function comparisons for which the underlying data within a bin is not
gaussian. This frequently occurs with fits that include Systematic errors.

For another example, look at Figure 12.6, and consider the bins on the far left- and right-hand sides of the plot. The
error bars are simply the square root of the number of events in the bin, which is a reasonable approximation for a

3 If you’ve studied machine learning, some of this will sound familiar; e.g., here the “cost function” is x2. The procedure is still to follow deepest
descent of the gradient of a function to locate a minimum. However, the nitty-gritty details aren’t the same because a x? fit is a different problem; I
wouldn’t use Tensorflow to fit a gaussian to experimental data!

. A too-brief and too-long introduction to statistics 155

https://www.tensorflow.org/

Nevis Labs ROOT tutorial, Release 22.0.2

gaussian. But the number of events in those left/right bins is less than ten, which you know from Figure 12.3 should
be represented by a Poisson distribution.*

For these cases you may need to use a “log-likelihood” test. I won’t discuss this further’+° but it’s important that you
know it exists.

For more on this topic, I prepared a Jupyter notebook on how to use a general-purpose function minimization program
called Minuit from within Python and apply it to histograms I created using ROOT.” If you’re interested in this (or
writing minimization routines), you can view a static version of my Minuit notebook, or you can copy the file:

cp ~seligman/root-class/minuit-class.ipynb $PWD

Chi-squared per degree of freedom
Let’s suppose your supervisor asks you to perform a fit on some data. They may ask you about the chi-squared of that
fit. However, that’s short-hand; what they really want to know is the chi-squared per the number of degrees of freedom.

Take a careful look at the text box in the upper right-hand corner of Figure 12.6. One of the lines in that box is “y~ /
ndf”’. You’'ve already figured that it’s short for “chi-squared per the number of degrees of freedom” but what does that
actually mean?

Take another look at Equation (12.4) for the gaussian function:

X2 _ Z (y7 - f($§AaHvU))2

2
i €

4 Remember that footnote back in Working with Histograms? Neither do 1. Wait... I think it was the one that talked about have varying bin
widths in a histogram. Now you know why that can be a good idea: so that all of the bins have enough events that they can reasonably approximated
by a gaussian distribution, and a x? fit would be appropriate.

5 ...because I don’t fully understand it myself. Maybe, at the end of your research work at Nevis, you’ll teach me!

6 There’s a package in ROOT called RooFit that easily performs log-likelihood fits. Another important feature is that RooFit can perform fits on
a set of individual data points, instead of requiring that the data be binned in a histogram.

7 If you don’t know what a “Jupyter notebook” is, it means you haven’t yet reached The Notebook Server in this tutorial.

156 Chapter 12. Appendix

https://nbviewer.org/urls/www.nevis.columbia.edu/~seligman/root-class/files/minuit-class.ipynb
https://root.cern/manual/roofit/

Nevis Labs ROOT tutorial, Release 22.0.2

AT THIS POINT, YOURE PROBABLY
THINKING, “T LOVE THIS EQUATION
AND WISH IT LJUUHLD NEVER END!"

WELL, GOOD NEWS!

TAYLOR SERIES EXPANSION 15 THE WORST.

Figure 12.7:: https://xked.com/2605/ by Randall Munroe. The x? calculation is not a Taylor series! But given enough
data points. ..

As I mentioned before, within each individual bin ¢ the data forms a little gaussian distribution of its own with a mean
of y;. The e; acts as a scale of the difference between y; and the function f(x). So if f(x) is a reasonable approximation
to y;, M will be around 41. You add up those “1”’s for each of the bins, and you might anticipate that x? will
be roughlylequal to 4, the number of bins.

That doesn’t tell the whole story. There are three “free parameters” in the fit: A, i, 0. They’re going to be varied to
make the chi-squared smaller. The net effect is that total number of “degrees of freedom” for minimizing the x? is:

DOF = number of data points — number of free parameters in the function

The histogram in Figure 12.6 has 100 bins, and a gaussian function has three parameters. If you look at the figure again,
you'll see x? / ndf = 94.56 / 97. It looks like ROOT knows how to count the degrees of freedom, at least for simple
functions and histogram fits. If you’re using a more sophisticated fitting program like Minuit, you may have to figure
out the DOF yourself.

So far so good, but would it better if the x? were even lower? No, it wouldn’t!

Statisticians have studied the question: What is the probability that a randomly-generated set of data came from a
particular underlying distribution? If you look around the web, you’ll find tables that compute this probability for a
given x? and ndf. When you get to more than a couple dozen ndf, there’s a simpler test: see if the ratio x? / ndf is
around 1. For the particular fit in Figure 12.6, the value of x? / ndf = 94.56 / 97 is reasonably close to 1; your supervisor
would probably accept it.

What might cause x? / ndf to be much greater than 1?

+ There’s something wrong in the routine that’s calculating 2, either in the code or the underlying model. That

. A too-brief and too-long introduction to statistics 157

https://xkcd.com/2605/

Nevis Labs ROOT tutorial, Release 22.0.2

probably won’t happen if you’re fitting histograms in ROOT with simple functions, but I can’t tell you the number
of days I’ve spent sweating over a chi-square calculation that I wrote.'

The model that’s being assumed for the function does not have enough freedom or has the wrong form to fit the
data. This does not mean you can just throw additional parameters into the function for the sake of improving
the x2!?

The error bars for your data are too small; in other words, there are additional sources of error (possibly systematic
error) which you have not yet included.

Function-minimization programs can get “stuck” in a local minimum that’s not the actual true minimum; there’s
an example of that in The Basics (and in that Minuit notebook I described above).

What might cause x? / ndf to be much less than 1?

Again, something wrong in the x? calculation.

Too many free parameters in the function you’re using to fit. For an extreme example, consider what would
happen if we tried to fit Figure 12.6 with a 100-degree polynomial. Of course, that function would be able to go
through the middle of every y; in the plot and the resulting x? would be close to zero.’

The error bars for your data are too large. This can happen if you’re not careful in how you add up your errors;

if you simply add all your errors in quadrature <\/ oi+oi+o05+..) you may have overlooked that some of

your errors are correlated; i.e., there are terms o;0; where ¢ # j. If that’s the case, you have to calculate x? with
an extension of Equation (12.4) using a covariance matrix.

Someone has gone wrong in your data-analysis process and you're “tuning” the data to the model you want to
fit.*

1

.or worse, someone else wrote, then graduated quickly before anyone could ask troublesome questions.

2 In case you think I'm joking: This actually happened during the analysis effort of my thesis experiment. No, I wasn’t the one who did it. The
issue remained unnoticed for a few years before I uncovered the problem; fortunately, we hadn’t published any papers based on that erroneous fit.

3 See Figure 3.8 for an example.

4 This can happen accidentally, but there are times it’s deliberate. Five decades after the death of the monk Gregor Mendel, a statistical analysis
of his results showed that he was faking his data to agree with his model of genetic inheritance. As it turned out, his model was correct. That makes
him the luckiest fraud in the history of science.

158

Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

“We’re looking for a five-sigma effect”

Suppose after a long and detailed physics analysis, you finally have a result. Assume it’s in the form of a measurement
and its associated error.! Let’s further assume that there’s a null hypothesis associated with this measurement: If a

particular property did not exist, the measurement would have been different.

T CAN'T BELIEVE SCHOOLS
ARE ST TEACHING KIDS
ABOUT THE NULL HYFOTHESIS.,

1
T REMEMBER READING A BIG
STUDY THAT CONCLUSIVELY
DISPROVED IT MARS AGO.

No

Figure 12.8:: https://xkcd.com/892/ by Randall Munroe

When physicists consider such a measurement, they ask the question: What is the probability is that their measurement
is consistent with the null hypothesis; that is, what are the chances that the null hypothesis is correct, and that their

measurement is just a random statistical fluctuation?

Let’s take another look at our friend, the gaussian function. As a probability distribution, it indicates the likelihood of
a particular measurement being different from the actual underlying value.

! As you’ll learn in the section on Systematic errors, the errors are the tough part.

. A too-brief and too-long introduction to statistics 159

https://xkcd.com/892/

Nevis Labs ROOT tutorial, Release 22.0.2

0.4

0.3

0.2

34.19% 34.1%

13.6%

0.0 0.1

—30 —20 —10 0 1o 20 30

Figure 12.9:: A plot of the normal distribution where each band has a width of 1 standard deviation. Source: M. W.
Toews, under the CC-by-4.0 license

Think about this in the context of the following cartoon. The scientists perform 20 tests each with a significance at the
5% level. You’d expect that one of the tests would randomly be far enough from the “mean of the normal distribution”
that you’d get an anomalous result. Physicists often can’t perform multiple measurements of a given quantity,” so they
look at their results in a different way.

2 The Large Hadron Collider at CERN costs about $9 billion. It’s obvious that they should build 100 similar nine-mile-wide particle colliders so
we can make multiple independent measurements of the Higgs boson mass. Why they haven’t is completely beyond me.

160 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

JELLY BEANS WE FouND NO THAT SEMLES THAT.
CAUSE. ACNE! LINK BETWEEN .
T HEAR ITS ONLY
SCIENTISTS! JELLY BEANS AND A CERTAIN COLOR
wssnemf' AONE (P> 0.05). THAT CAUSES IT.
BUT WERE \
mgg‘ﬂ SCIENTSTS
FIN‘E HI'IlmECAlFTI
WE FOUND'NO WE FOUND NO WE FOUNDNO WE FOUND'NO WE FOUND'NO
LINK BETWEEN LINK GETWEEN LINK BETWEEN LINK BETWEEN LINK GETWEEN
FURPLE JELLY BROWN JELY PInk. JELLY BWE JEWY TEAL JELLY
BEANS AND ACNE. BEANS AriD ACE. BEANS AND ANE. BEANS AND ANNE. BEANS AND ACNE
(p>0.05) (P>005) (p>0.05) (p>0.05) (p>0.05).
/ / / / /
WE. FOUND'NO WE. FOUND NO WE FOUNDNO WE FOUND'NO WE FOUND'NO
LINK. BETWEEN LINK GETWEEN LINK, GETWEEN LINK BETWEEN LINK GETWEEN
SALMON JELLY RED Jeuy

TURGUOISE JEUY | | MAGENTA JELY YELLOW JeLy
BEANS AD ACNE. BERNS A ACIE

BEFNS AND ANE. BERNS PRID ACNE. BERNS AND ACNE
(p>o0.05) (P>0.05), (P>0.05), (P>005) (P>005),
/ / / / /
WE FOUNDNO WE FOUND NO WE FOUNDNO WE FOUND A WE FOUND'NO
LINK, BETWJEEN LINK, GETWJEEN LINK BEMJEEN LINK BETWEEN LINK, BETWEEN
TAN JEWY CvaN JELy GREEN JeLLy MAWVE JELY
BERNS AND ACNE. BEPNS AND ACIE BEANS AND ANE BEANS AHND ANE BEANS AND ACNE
(p>005) (p>005) (p>005) {p<oos) (p>005)
@’ > @’ ko g @’
WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NG
LINK BETWEEN LINK. BETWEEN LINK BETJEEN LINK BETWEEN LINK BEWEEN
Belee JELy LitAe. JELLY BLACK JELy PERCH JELLY ORPNGE JELLY
BEANS AD ANE BEANS PND ANE. BEANS AD ANE. PHD ACHE.
(p>005) (pP>0.05) (p>005) (pP>005) (P>005)
/ /

95 ConFrDenE

ey gy
Pl

Figure 12.10:: https://xked.com/882/ by Randall Munroe

When physicists express a measurement versus a null hypothesis, they usually state it in terms of “sigma” or the number

A too-brief and too-long introduction to statistics 161

https://xkcd.com/882/

Nevis Labs ROOT tutorial, Release 22.0.2

of standard deviations that it is from that hypothesis. This is how I think of it, even though they don’t usually show it
in this way:

Null hypothesis: . Search for P particle
10 The P particle does not exist
08}/ -
06 \ .
-
p Measurement:
0.4 \ 22.01 £3.52 =
02} \ i
Normal distribution's Normal distribution
with mean=null hyp.;:0=3.52 with mean=22.01 0=3.52
0.0 t+ | —— .. foocooooeooos A------ | "
0 5 10 15 20 25 30

Energy measured [WeV]

Figure 12.11:: What I picture when a physicist says they’ve observed an effect at more than a 5o level of significance.

In this imaginary experiment, the result is reported at 22.01 &+ 3.52 WeV. I picture a normal distribution with a mean
of 22.01 and 0=3.52 superimposed on the measurement. Then I count off the number of sigmas between the mean and
the null hypothesis. In this particular imaginary experiment, the difference is more than 50 and therefore refutes the
null hypothesis. Hence the P particle exists!

In other words, I imagine an assumption that the same normal distribution applies to the null hypothesis (the dashed
curve) and ask if what we actually observed could be within 5o of the mean of the null hypothesis.

At this point, you may have compared Figure 12.9 and Figure 12.11, including the captions, and thought, “Wait a
second. A 3o effect would mean that the odds that the null hypothesis was correct would be something like 0.1%,
right? In fact, I just looked it up, and the exact value is closer to 0.3%. Isn’t that good enough? It’s much better than
that xkcd cartoon. Why do physicists insist on a 5o effect, which is around 0.00003% or one in 3.5 million?”

A 30 effect is indeed only considered “evidence,” while a So effect is necessary for a “discovery.” The reason why is
summarized in a quote from a colleague on my thesis experiment: “We see 30 effects go away all the time.”

The reason why 3o effects “go away” is a deeper study of the data and its analysis procedure. One potential cause of
such a shift is a change in systematic bias as you work to understand your Systematic errors.

162 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

t
T “REMEMBER, 50% OF
THE DISTRIBUTION
MDPONT 1 527¢ FALLS BETJEEN
l THESE TLO LINES!"
’
HOLJ TO ANNOY A STATISTICIAN

Figure 12.12:: https://xkcd.com/2118/ by Randall Munroe

Systematic errors

A statistical error is one that’s due to some inherit randomness in your process of making a measurement. A systematic
error comes from a consistent bias in that measurement, but you don’t know how much that bias is. The systematic
error is the limit you assign to the potential range of that bias.

To explain this concept, I like to start with that old statistics example: measuring the size of a table with a ruler.
You repeat this measurement every day. There is some variance in the day-to-day measurement: you tilt your head
differently, the light in the room depends on time of day, you’re feeling tired that day, etc.

There’s a reasonable chance that if you were to plot these measurements, the result would look like a gaussian distri-
bution. The standard deviation of that distribution would be related to the statistical error in your measurement.

To understand the systematic error in the measurement, you have to ask: How do we know that 20cm as measured on
your ruler is the same as 20cm as measured on mine? Or 20cm as measured by the Physics Department of Polytechnic
Prep in Birnin Zana? Or the International Committee for Weights and Measures in Saint-Cloud, Hauts-de-Seine,
France?

. A too-brief and too-long introduction to statistics 163

https://xkcd.com/2118/

Nevis Labs ROOT tutorial, Release 22.0.2

T0 END MANY YEARS OF CONFUSION
THE INTERNATIONAL COMMITTEE FOR
WEIGHTS AND MEASURES HAS JUST
VOTED To REDEFINE THE KILOGRAM,

|
AS OF NEXT MAY, IT WILL
EQUAL EXACTLY ONE POUNC,
OH, CooL.

THAT DOES MAKE
THINGS SIMPLER.

Now

.,

B

-

Figure 12.13:: https://xked.com/2073/ by Randall Munroe

I’ll give you a hypothetical chain of reasoning along the lines that a physicist (or a metrologist) might use to think
about systematic errors. Assume that your ruler is similar to the one sitting next to my desk right now, a cheap one I
purchased at a drug store 30 years ago.

* The ruler is made of plastic. I assume liquid plastic was poured into a mold then allowed to harden. What are the
thermal characteristics of this particular type of plastic? Does it shrink when it’s cooled? Does its shape distort
when it gets hot in my apartment? Has it become warped over the past 30 years due to the age of the plastic or
the conditions in which I've stored it?

* If a metal mold was used to shape the plastic, does it have thermal characteristics of its own? It might have been
shaped at room temperature, yet plastic is poured into it at some higher temperature. Is this temperature variation
enough to distort the mold to some degree?

* How was that mold made? Did it start out as a block and then was shaped at a tool-and-die factory? What was
the precision of the drill, mill, or press used to create that mold?

* Who manufactured that drill, mill, or press? How accurate was the tool that made it?
And so on.

Your probable reaction to the above list is that all these effects are too small to worry about for an actual 30cm plas-
tic ruler being used to measure a typical living-room table. Let’s consider a more realistic scenario: the imaginary
experiment mentioned in Figure 12.11, the discovery of the P particle.

For the purposes of this example, the P particle is hypothesized to be emitted by a rare decay of Vb299. The energies of
the decay products of Vb299 are measured with a calorimeter. The detector setup is located under the Jabari mountains,
but even so enough cosmic rays get through to be a substantial background for the rare signal they’re trying to detect.

164 Chapter 12. Appendix

https://xkcd.com/2073/

Nevis Labs ROOT tutorial, Release 22.0.2

The calorimeter measures the energy of the particles and returns some value in millivolts. You have to calibrate the
calorimeter, to translate those millivolts into WeV. The typical way to do this is to shoot a beam of particles of known
energy at the calorimeter, and see how many WeV corresponds to the calorimeter output in millivolts.

A calorimeter has some energy resolution. Even if you shoot a beam of known energy into one, you're going to
see a spread in the resulting detector response. Perhaps that distribution will look like a gaussian, but you’ll still
have to fit it. Take another look at Figure 12.6. There’s a fitting error associated with the mean and sigma of the
distribution. The width of that distribution is your energy resolution; the error in the mean is a systematic error
of your energy calibration.'+?

e What is the exact energy of that beam of electrons used to calibrate the calorimeter? The electrons might be
extracted from an ARC reactor and sent through a chain of focusing and steering magnets. The final step is to
point the calibration beam at the calorimeter with a bending magnet to select those electrons with a given energy.
The mean energy of the beam will depend on the magnetic field of the final bending magnet. How well do you
know that magnetic field? That will be another source of systematic error.

* You have to separate the energy signatures of the P particle from those of the cosmic rays that pass through the
calorimeter. How well can you identify the event type? You’ll apply various analysis cuts (there are examples of
this in The C++ Path and The Python Path), but there’s always a limit to their efficiency, for another source of
systematic error.

» The above were sources of experimental systematic error. Now let’s consider a theoretical systematic error: Both
Dr. Shuri Wright and Dr. William Ginter Riva have published models of the predicted energy spectrum from
Vb299 decays involving the P particle. The separation of your signal from the cosmic-ray background depends on
the model. You must perform your analysis with both models and treat the difference as a theoretical systematic
error.

You may feel that these examples are as unimportant as the systematic errors I hypothesized for the ruler,® but they were
adapted from cases within experiments I’ve worked on; the relative sizes of such errors are much larger than the errors
in a plastic ruler due to a milling machine. If anything, I've underestimated the number of systematic errors considered
in a typical physics experiment.

In case my fictional example left you dubious about the concept of systematic errors, here’s a systematic error table
from a real physics analysis. Note how the total error at the bottom is dominated by the systematic errors over the
statistical errors. In particular, the largest systematic error is “ISR and FSR” (Initial State Radiation and Final State
Radiation) which is a theoretical systematic error.*

! For a x? fit, the uncertainty in a parameter comes from shifting that parameter and looking at its change about the minimum when x2 varies
by 1. I don’t expect you absorb that bit of arcane trivia right now; it’s enough to know that any fits to points with error bars will necessarily have
error estimates in the fit results.

By the way, this is the answer to the statistics question 1 posed back in Fitting a Histogram.

2 The error in the mean from fitting to the detector response is usually reported as the “energy calibration.” The standard deviation of that fit is
the “energy resolution.” You’ll usually see these two reported separately (as in Figure 12.14).

On my thesis experiment, it took us years to understand both the energy calibration and the energy resolution, and their correlation with each
other. In part this is because they’re also a function of energy; e.g., the energy resolution is often reported using a formula like o(E) = K/ VE,
where K has to be determined by the analysis.

3 You might be justified in this impression given the obscure pop-culture references. If you didn’t get the references, do a web search on Birnin
Zana, then ask yourself which element is Vb299 and what WeV stands for.

4 Let’s add up those individual errors. Wait... the total is 7.27, not 2.27! What’s happening?

The answer is that the errors are being added in quadrature. If a given error is ;, then adding them in quadrature means to compute (Z i 63) Y 2,

But that computation assumes that none of the systematic errors are correlated; i.e., there are no 6;J; terms with ¢ 7 j. Is that necessarily true?
For example, in Figure 12.14, what if the “Jet energy scale” was correlated with the “Jet energy resolution”?

At this point, you may be coming to understand the complexity of handling errors in a physics analysis.

. A too-brief and too-long introduction to statistics 165

Nevis Labs ROOT tutorial, Release 22.0.2

Uncertainty Anyg, [GeV]
Statistics 0.94
Method calibration 0.40
Signal MC generator 0.62
Single-top Wt generator 0.28
Hadronisation and parton shower 0.55
ISR and FSR 1.39
Underlying Event 0.67
Colour Reconnection 0.23
Parton distribution function 0.42
Single-top contribution 0.10
Leptons 0.50
EZ" 0.12
b-tagging 0.08
Jet energy scale 0.60
Jet energy resolution 0.32
Jet vertex fraction 0.05
Total 2.27

Figure 12.14:: From ATLAS PUB Note ATL-PHYS-PUB-2018-001 31st January 2018 Investigation of systematic
uncertainties on the measurement of the top-quark mass using lepton transverse momenta

I did a lot of hand-waving to condense what little I know about statistics into these pages without (I hope) getting too
bogged down in the math. If you’d like more rigorous explanations of these concepts, see my list of statistics books.

Anyone can make a measurement. Understanding the error on that measurement is the true skill of a physicist.

166

Chapter 12. Appendix

https://www.nevis.columbia.edu/~seligman/root-class/links.html

Nevis Labs ROOT tutorial, Release 22.0.2

I DONT KNOL HOW To PROPAGATE
ERROR CORRELTLY, S0 I JUST PUT
ERROR BARS ON ALL MY ERROR BARA.

Figure 12.15:: https://xked.com/2110/ by Randall Munroe

Note: Don’t laugh too quickly. Adding statistical and systematic errors can be a tricky business. Often an experiment
will report them separately, and sometimes will plot them in a similar way as this cartoon.

. A too-brief and too-long introduction to statistics 167

https://xkcd.com/2110/

Nevis Labs ROOT tutorial, Release 22.0.2

Programming Tips

Over the past few years, I've asked the faculty at Nevis, “What non-ROOT topics would you like me to cover in my
computing tutorial?” In 2021, I got the response, “Teach them how to make their code faster.”

That’s a huge topic. It’s not quite big enough for me to make the “lifetime” joke again, but it’s hard to decide what
exactly to teach.

The topics below are a scattering of tidbits that I’ve picked up over the years. I hope you find at least some of them
useful.

Bad Code

If my task is to help you “speed up code”, then I feel that the first part is to help you maintain it.

This is one of the 10/90 principles of programming: 10% of the time will be spent writing a program; 90% of the time
will be spent maintaining it.'

Let’s start by looking at a code fragment. For the sake of argument, assume that it “works,” in the sense that it’s part
of a larger program that produces the results that you expect.

Pick the Python version or the C++ version. Can you figure out what, in my opinion, is wrong with this code?’

Listing 12.1: What’s wrong with this Python code?
Compute the vector product of the two velocities
i=10
while j < i+1:

(continues on next page)

! The other 10/90 principle is that 10% of the code is responsible for 90% of a program’s execution time. We’ll deal with creating faster code in
the next section.
2 One question you might ask is, what does += mean?
I confess to a weakness: I use this syntax so often that, when I was setting up code examples, I hadn’t even noticed that I used this operator until I
wrote most of this appendix.
To explain: The following kind of statement is very common in programming:

a=a+b

To make lines of code a bit shorter, and to allow language interpreters or compilers a chance at improving efficiency, both Python and C++
implement a set of operators:

+=, -=, *=, /=, %=

The first one is by far the one I've seen most often. The following two statements do the same thing:
a=a+b
a+=b

As do these statements:

value = value + offset

value += offset

C++ goes a step further. Since adding (or subtracting) 1 is very common, the language has ++ (and --) operators. The following statements do
the same thing:

a=a+ 1;
a += 1;
a++;

++a;

There’s a difference between a++ and ++a, but I'll leave that topic to a more formal C++ course.
Now you know why the language is called C++!

168 Chapter 12. Appendix

https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://medium.com/sololearn/reasons-to-love-c-11c7c2f23d88

Nevis Labs ROOT tutorial, Release 22.0.2

(continued from previous page)

k=1+3
s[jl += k*j
j+=1

Listing 12.2: What’s wrong with this C++ code?
// Compute the vector product of the two velocities
int i = 10;
while (j < i+1) {
int k =1 + 3
s[j1 += k*j
j+=1

Hint: In my opinion:

» There are at two execution-speed problems with this code (though they affect the Python version more than the
C++ version). There is also a separate speed problem with only the Python code.

* There are also at least two programming-style problems with the above code.

My answers are in the next section.

Is this worth it?
It’s natural to ask this question. We’re all busy. If the code works, why make a fuss about it?
I offer the following in response:

* If code is unclear, it will be harder to maintain. You may feel that’s the next person’s problem. Except that the
next person is likely to be you!

Suppose you’ve have a program that performs a cluster-finding algorithm. It works, but it’s quickly and sloppily
written. You save it and move on to your next project.

Six months later, your team comes back to you: “You're the cluster-finding expert. Update your code so that it
accommodates this revision.” Of course, you’ve forgotten about your old code.® You look at it now. .. and realize
that five seconds worth of effort back then would have saved you hours or days re-analyzing your old code to
figure out what it did.

* Typically, physics groups don’t do code review. But professional programming environments do.

A “code review” is when a group of programmers looks over your code to see if it’s acceptable to add to a project,
in much the same way a physics group will review a paper to see if it’s acceptable for publication. If you find
yourself in a programming group, they’re not going to accept your code if has the kinds of flaws I discuss here.

3 I know you think you’ll remember. You won’t. Although arguments from authority are always suspect, please take it from someone who’s been
programming for over five decades.

Programming Tips 169

Nevis Labs ROOT tutorial, Release 22.0.2

YOUR, CODE LOOKS LIKE | [IT'S LIKE A J50ON | LIKE YOU RERD TURING'S ITS LIKE A LEET-SPEAK TRANSLATION
SONG LYRICS \WJRITTEN | | TABLE OF MODEL | 1936 PAPER ON COMPUTING | OF A MANIFESTD BY A SURVIVALIST CULT
USING ONLY THE STUFF | | NUMBERS FOR | AND A PAGE OF JAVASCRIPT | LEADER WHO'S FOR SOME REASON
THAT COMES AFTER THE | | FLASHLIGHTS EXAMPLE CODE AND GUESSED | OBSESGED WITH MEMORY ALLOCATION.
QUESTION MARK IN AURL. | | WITH "TACTICAL | AT EVERYTHING IN BETWEEN. [T CAN GET SOVEONE

K sorey. | | ™ T”?\“R NAVTES. K ELSE T0 REUIEL) MY CODE.

: NOT MORE THAN \¢
ﬁ ONCE, T BET- g
| (] -

Figure 12.16:: https://xkcd.com/1833/ by Randall Munroe

Faster Code

Note: I won’t claim that my suggestions will make the code perfect, merely that they will make the code better (at
least in my biased opinion).

Take another look at the code from the previous section. To keep things simple, let’s just consider the Python version:

Compute the vector product of the two velocities

i=10

while j < i+1:
k=1i+3
s[i] += k*j
j+=1

I'll start with this line:

while j < i+1:

What is the value of i+1? It’s 11, since we have i = 10 on the line above. Is the value of i+1 going to change as we
go through the loop? No, there’s nothing that changes the value of i in the loop, so i+1 will be unchanged.

But Python doesn’t “know” that. Python is an interpreted computer language: The Python interpreter looks at each
line, one-by-one, converts that line into the native computer machine language, and executes it.'

That means that every time the Python interpreter goes through the loop, and interprets the statement while j <
i+1:, it’s re-computing the value of i+1. Since i never changes (in the loop), i+1 never changes. Yet Python must go
through the additional step of adding 1 to i each time.

Therefore, I claim:
Speed problem 1: The loop performs an unnecessary computation of i+1 for every iteration of the loop.

Now you’ve probably already guessed:

! For anyone familiar with compilers and interpreters, I’m skipping over a lot of details here. However, the details (as important as they are to
the overall science of computing) still support my point. .. I think.

170 Chapter 12. Appendix

https://xkcd.com/1833/

Nevis Labs ROOT tutorial, Release 22.0.2

Speed problem 2: The loop performs an unnecessary computation for k = i+3 for every iteration of the loop.

Again, since the value of i+3 never changes, the value of k never changes. Yet Python must spend time re-calculating
k.’

Note: Why this fuss over a simple addition? Computers are fast, aren’t they? And it’s just an addition, not calculating
the space-time tensor in the vicinity of a black-hole merger.

But:

* Programs and goals change over time. Right now a loop may be going through 11 entries in a table. Tomorrow
it may be going over 10,000 entries.

* In my experience, paying attention to what’s actually modified in a loop helps one write code that is easier to
read and debug.

Let’s revise the Python version with those two points in mind:

Compute the vector product of the two velocities

i=10
k=1i+3
m=1i+1
while j < m:
s[3] += k*j
j+=1

Well, it’s faster... but there are still problems with it. We’ll look at them in the next section.

Clearer Code

Here’s a repeat of the “faster code” from the previous section:

Compute the vector product of the two velocities
= 10

=1i+3

=1i+1

while j < m:

s[3] += k*]

j+=1

5~ H %

I’'m going to start with an “iffy” style issue: From this code, we can’t tell what the initial value of j is supposed to be.

Since j is presumably assigned outside this fragment from a larger program, it may be that the calculation of j is
complicated.

However, it may also be that the programmer stuck j=0 somewhere near the top of the program. This leaves us, the
code’s reviewers, in doubt about the limits of the loop.

So I'll only go as far as to claim:

Style problem 0.5: The initial loop limit may be defined too far from the start of the loop. In general, one would like
the loop limits to be defined near the loop statement.

2 If you’re a C++ programmer, your reaction may be that these two points are meaningless for an optimizing compiler. That’s a legitimate reaction,
but I maintain it’s no excuse for sloppy code.

Programming Tips 171

Nevis Labs ROOT tutorial, Release 22.0.2

My next style complaint has to do with the single-letter variable names. A single letter may be appropriate for the loop
index,' but for the other variables a single letter just hides what’s going on.

Style problem 1: The variable names tell us nothing about what the variables do.

Style problem 2: The comment has nothing to do with the code.

Warning: I’m about to go off the deep end. What follows is very subjective. But if you’re willing to wade through
it, you might come out writing better programs.

Program comments are my pet peeve. In my view, the comments are part of the code. When you write the code,
write the comments. When you revise the code, you revise the comments.?

The comment says “Compute the vector product of the two velocities” but the code has nothing to do with vec-
tor products. When you see something like this, it means that someone revised the code, but left the comment
unchanged.

This is just as bad as having no comments at all, if not worse. Anyone else looking at the code is going to be
confused, since the comment says one thing and the code says another.

Writing comments can be tedious. But revising uncommented or badly-commented code is a nightmare.
One more time:
* Put comments in your code.

¢ Describe the purpose of the section of code. You don’t have to describe the syntax of each line (unless it uses
an obscure feature of the language); there are plenty of web sites on programming-language syntax.

+ The comments are part of the code. When you revise the code, revise the comments.>*

With all that said, let’s take a look at what the revised code might look like:

For each user, add a displacement to the distance array
interval = 10
scale = interval + 3
limit = interval + 1
j = 0 # or previously calculated elsewhere
while j < limit:
distance[j] += scale*j
j+=1

We’re faster and clearer than when we started. In the next section, we’ll see if we can use the programming language
make things even faster for us.

! Back in good ol days, scientists programmed in FORTRAN. As the name implies (FORTRAN = “FORmula TRANGslation”), the language was
designed to implement mathematical expressions as directly as possible, given the punch-card technology of the time. In those days, FORTRAN
variable names could not be more than six letters long (yes, really!), and mathematical notation mainly uses single letters for indexing matrices and
such.

That’s why, to this day, there is a tendency to use i, j, k, etc. as the loop variables in programs, along with simple repeats like ii, jjj, k3.

2 I know there’s a strong impulse to get to it “later.”” As I note in one of the expert exercises, there’s no experimental evidence of the existence of
“later.” I"'m an experimentalist, not a theorist, which is why I put comments in my code.

3 Remember when they made you take an English class in college, even though you're a science major? I imagine you thought that this was
to teach you to think critically, to better enjoy literature, to understand the world with nuance and conviction, to appreciate diversity, to develop
sensitivity, and to contribute to the future of culture.

Well, yeah, I suppose so. But the real reason was to teach you how to write and revise program comments.

4 Occasionally you will meet people who claim that there’s no need to comment their code, because their choice of variable names is so good
that the code is “self-documenting.” There are also people who claim to have seen Bigfoot or the Loch Ness Monster. I lump all those claims into
the same category.

To put it another way: The goal of writing comments is to document the code’s purpose and to save time for the next person who has to work with
it. If you're forcing the next person to analyze your variable names and deduce the code’s function, you haven’t saved anyone any time.

172 Chapter 12. Appendix

https://www.mathsisfun.com/algebra/vectors-cross-product.html
https://www.mathsisfun.com/algebra/vectors-cross-product.html
https://ourcodingclub.github.io/tutorials/fortran-intro/

Nevis Labs ROOT tutorial, Release 22.0.2

HOW TO WRITE GOOD CODE:

NO AND THE
REQUIREMENTS
HAVE CHANGED,

THROW IT ALL OUT |,
AND START OVER.

CODE

Figure 12.17:: https://xkcd.com/844/ by Randall Munroe

. Programming Tips 173

https://xkcd.com/844/

Nevis Labs ROOT tutorial, Release 22.0.2

Loops

Note: There’s a saying: “In C, loops are your friend. In Python, loops are your enemy.”

C++ is a compiled language. In the process of turning C++ code into machine language, the compiler can do many
things to automatically optimize your code; for example, it can identify small loops (like the one in our example code
fragment) and arrange for it to be executed in a CPU’s memory cache.

Python can’t do this. It has to interpret each line one-by-one. In a loop, it goes through each line, then “backtracks” to
the beginning of the loop and freshly interprets each line again.

There are some tricks to get around this. Mostly they involve using Python to call routines written in C.'

As a first step, let’s get rid of one “cheat” that I put into our code fragements. The while statement has its uses, but
they’re associated with potentially varying logical conditions like reading a file. If you’re incrementing a number by a
constant interval, then both Python and C++ have a better way to write a loop.”

Listing 12.3: A for loop in Python

For each user, add a displacement to the distance array
interval = 10
scale = interval + 3
limit = interval + 1
Assuming we want j=0:
for j in range(0®,limit):
distance[j] += scale*j

Listing 12.4: A for loop in C++

// For each user, add a displacement to the distance array
int interval = 10;
int scale = interval + 3;
int limit = interval + 1;
// Assuming that we want j=0:
for (int j=0; j < limit; ++j) {
distance[j] += scale*j

There’s not much more we can do for the C++ code,’ so we’ll focus on the Python version of the rest of this section.

I didn’t supply a defintion for distance. Given the use of distance[j], it could be simple Python array. But if
you’ve used Python before, you're probably screaming at me: “Use numpy!”

The length of the distance array isn’t specified in the code fragment. In theory, it could be larger than 1imit. Let’s
be general for the moment, and assume the length of distance is greater than 1imit.

! At this point in the tutorial, you already know that I'm biased in favor of C++ over Python. So I can’t help but be snide and point out that if
you’re using Python to call C, write not write your code in C in the first place?

The usual reason to prefer Python is its development cycle: You can quickly test small fragments and integrate them into your larger program. But
now you know ROOT, which has a C++ interpreter that lets you do the same thing.

With that foolishness off my chest, I will continue to support and inform your use of Python. I've got at least one more lifetime I can spend learning
more about the language!

2 I'm now using a lower limit of j=0 in the loop, which I did not explictly do when I first introduced the fragments. In the “real” world, if the
value of j was more complicated, it would not change the loop code by much... except that I would not have continued to use the simple letter j
for the name of the variable.

3 Though as we’ll see in the next section, there’s a way to improve the C++ compilation, as opposed to the code.

174 Chapter 12. Appendix

https://www.w3schools.com/python/python_arrays.asp
https://numpy.org/doc/stable/user/basics.html

Nevis Labs ROOT tutorial, Release 22.0.2

import numpy as np

distances = 20 # or some other value

Create a numpy array of length 'distances'
distance = np.zeros((distances))

Given the artificial nature of the original code fragment, the fastest way to perform this task is to use numpy’s array
features:

Listing 12.5: The Python code using numpy

For each user, add a displacement to the distance array
interval = 10

scale = interval + 3

limit = interval + 1

j = 0 # or previously calculated elsewhere
distance[j:1limit] += scale * np.arange(j,limit)

This will give us C-level speed. It’s up to you to decide whether this gives us Python-level clarity.*

Here’s a more detailed tutorial on using numpy to perform faster computations.

Compiling Your Program

Note: We’ve come to the end of the programming tips to make your code run faster. The rest of this page offers methods
of compiling your code in ways that can increase its speed. Note that I have not personally explored the Python-based
options.

Python
If you want the friendliness of the Python language syntax, but the speed of a compiled language, there are compilers
for Python.

These are installed on the Nevis particle-physics Linux cluster. If you visit the links below, you can ignore the instal-
lation instructions if you’re using one of the computers on the cluster, or you're using 7he Notebook Server.

Numba

Numba is a “just-in-time” compiler for Python. Basically, you create some code within a Python decorator that Numba
will compile the first time the decorated function is called. After the compilation, the function will execute at C-level
speed.

4 Although we’ve achieved faster code, we haven’t necessarily achieved more robust code. What if the value of 1imit is greater than the length
of distance?

Programming Tips 175

https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/VectorizedOperations.html
https://numba.readthedocs.io/en/stable/index.html
https://www.programiz.com/python-programming/decorator

Nevis Labs ROOT tutorial, Release 22.0.2

Cython

Cython is both a compiler and a language extension for Python.

In general, you’ll want to use Cython from the command line, as you would C++. But you can use it on our notebook
server. The Nevis wiki Jupyter page has an example.

C++

On the Nevis particle-physics Linux cluster, the GNU C++ compiler is standard. Its major competitor is clang.

By default, both compilers produce code that is optimized for debugging. But once you’re convinced that your code
works, you may want to get some extra speed by setting the -03 option, which optimizes the code for execution speed.' >

For example:

g++ ‘root-config --cflags --libs’ analysis.cc -o analysis -03

—|."-\CP-DEI‘1H°|‘-

MY GOD ... THIS WILL MEAN A HALF-DOZEN
FRPERS, A THESIS OR TWO, AND A PARAGRAPH
N EVERY TEXTBOOK. ON GUEUING THEORY!

T JUeT WRITE THE MOST THEY cASUALLY HANDED ME AN =
BEAUTIFUL CoDE OF MY LIFE. | | IMPOSSIBLE PROBLEM. IN 48 HOURS
AND 200 LINES, I SHVED 1T,

BUSINESS:

- YOU GOT THE PROGRAM T0 STOP JAMMING UP?
= GREAT. WHILE YOURE. FixING STUFE CAN YOU
He | — GET QUTLOOK, T SYNC. WITH OUR NEW PHONES?

Hs:

Figure 12.18:: https://xkcd.com/664/ by Randall Munroe

! Why should optimizing the code for speed make it harder to debug? Take another look at Listing 12.2, the example of “bad” C++ code. T
described how the code calculated values that were computed more than once, even though their values were unchanged in the loop. An optimizing
compiler would pull out any code that was independent of the loop, and execute it before the loop started.

However, it would do this on the machine-language level (or on the LLVM level, a topic way beyond the scope of both this tutorial and this
footnote). There would no longer be a correpondence between a bit of code that the computer executed and a given line in your program. This means
that any error messages generated during the execution of your program would be harder to track down.

2 Did I just give away an answer to a question I posed back in Exercise 11? Oops!

176 Chapter 12. Appendix

https://cython.readthedocs.io/en/stable/src/tutorial/index.html
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/IPython#Cython
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/LinuxCluster
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/LinuxCluster
https://clang.llvm.org/
https://xkcd.com/664/
https://llvm.org/

Nevis Labs ROOT tutorial, Release 22.0.2

Batch Systems

All of the Nevis particle-physics research groups have to work with “batch systems” as part of their analysis chain. You
probably won’t be asked to use a batch system as part of a summer project.

However, if you continue your work beyond that, and/or join a larger project, almost certainly there will be a batch
system in your future. This section will help you understand what the term “batch system” means, and give you some
insight into the planning you’ll need to do in order to use one.

Why batch?

For the sake of the discussion on this page and the next several pages, assume you have a program. The program has
at least one input file and at least one output file.'

You can run this program on your own computer, like so:

Your computer

Your program

Figure 12.19:: Let’s start from here: You’ve got a program. You run it on your computer.

Eventually, there’s one thing that every program needs to have: more. In physics, the typical need is to process more
data, which may in turn require more memory, larger disk files, more calculations, etc.

For now, let’s consider the need to process more data in the same amount of time. For example, if your program has to
process ten times more events to generate a histogram, it’s going to take longer to run.

Why not just let the program run longer? Part of the answer is that a longer program becomes a more vulnerable
program. I’ve seen programs that take weeks to run.” What if something goes wrong during that time; e.g., a power
outage on the computer; you close your laptop’s cover; someone else runs a job and crashes the computer. Another
reason is impatience: Why wait days to run a program when there are methods to split up the calculations and run the
process in minutes?

One way to approach this issue is to note that computers now come with more processing cores. It’s a rare laptop that
doesn’t have at least four cores; the login systems at Nevis have at least 16 cores each (if not more); many systems on
modern server farms have hundreds of cores.

! If you’ve gone through the ROOT tutorial, of course you have a program!
2 If you think I'm joking, ask an astrophysicist or someone working with the GENIE neutrino simulation about “spline files”.

Batch Systems 177

Nevis Labs ROOT tutorial, Release 22.0.2

What you can do is to re-write your program so it can take advantage of multiple cores, with each core representing
one execution thread.® Your program might then be viewed like this:

Your computer
(multiple cores)

Your program
(multiple threads)

One thread ‘ ‘ One thread ‘ ‘ One thread ‘ ‘ One thread ‘ ‘ One thread

Figure 12.20:: Multiple programming threads on a single computer.

However, writing a multi-threaded program is not easy. You have to consider whether your code is thread-safe, as
opposed to making uncoordinated accesses to the same region of computer memory.*

Apart from that, the multi-thread approach works well if you’re satisfied with the number of cores on your computer.
What you if you want more?>:°

Let’s consider a different method: running your program more than once simultaneously on the same computer.

3 If you recall the RDataFrame discussion, you can trivially make a program that uses RDataFrame into a multi-threaded program with a single
statement.
If you took the The C++ Path, you may remember something called PROOF that also lets you analyze an n-tuple with multiple threads. However,
the ROOT development team is phasing out PROOF in favor of RDataFrame.
4 “Hey, don’t just say thread-safety is hard! Show it!” Okay, whatever you say.
Assume that your program is going to count something, as you did when you learned about applying a cut. That means that each of your threads
might execute a line such as:

a=a+1

Remember, each one of your execution threads is running simulteously and asynchronously (meaning the threads aren’t “talking” to each other).

Now consider what happens when you execute a = a + 1. The computer takes the value stored inside the variable a. The computer then adds 1
to that value. Then the computer goes to store that new value into the memory location occupied by the variable a.

Except that while one computer thread is doing this, another thread may be doing the same thing. What’s the value of a? It’s the value that was
stored by the last thread to execute that statement. In other words, the value of a has become time-dependent; you’ll get different results depending
on how fast each thread executes.

“Isn’t there some way around this?”” Of course there is! For example, you can define a in such a way that each thread has their own copy of a, then
sum the copies of a after all the threads have finished. Or you can use a lock so that only one thread can execute a = a + 1 at any given instant.

If you’re writing multi-threaded code, you have to think about these issues for every line of code that you write. That’s why it’s hard.

QED!

5 Asking “what if” here is redundant. Physicists always want more. Always.
6 In discussing threads in this way, I'm skipping over GPU cards. These contain thousands of processors, each of which can represent a separate
thread. You may be familiar with this approach because it’s the basis of machine learning.

However, GPU cards are limited to those cases where each thread has a relatively simple and independent execution task (e.g., acting as a node
in a neural network). If each of your threads has to calculate the relativistic stochastic and non-stochastic energy loss of a muon as it passes through
liquid argon, then a GPU card may not be able to help.

Also, don’t forget the previous footnote: Even if your task can be accomplished by a GPU card, eventually you will want more. You’ll still want
to consider batch job submission to a “farm” of dedicated computers, each with its own GPU.

178 Chapter 12. Appendix

https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Lock_(computer_science)

Nevis Labs ROOT tutorial, Release 22.0.2

Your computer
(multiple cores)

A

Your program ‘ ‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘ ‘ Your program

Figure 12.21:: Multiple instances of the same program on the same computer. You could manage this with the Linux
at command, but as I note below, I don’t recommend this approach.

This avoids the threading issues. Each program is separate... and therefore requires a separate region of computer
memory. That’s part of the “more”; this time it’s “more RAM.”

Let’s think about this for a moment: If you run multiple simultaneous copies of the same program, each one will
produce an identical result. The usual way to handle this issue is to have the program accept a parameter of some kind,
and make sure that each instance of the program receives a different value of that parameter. We’ll get into how that
can be done in the Condor Tutorial.

Problem solved? Not quite. There’s nothing in this approach that keeps you from submitting any number of programs.
What happens at some point is that you’ll overload your computer, because it’s swapping between one program and
another, and probably running out of memory.’

While you could plan carefully and not run more programs than your computer has cores or memory, you’ve already
learned that physicists want “more.”® In particular, you probably want to just submit your program more than a dozen
times and have the computer manage it somehow.

Your computer
(multiple cores)

F. 3

‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘
s i mama et aasa s e e on holfd e e e e e e e e e e e e >
‘ Your program ’ ‘ Your program ’ Your program ’ Your program ’ Your program ’

Figure 12.22:: Managing multiple programs on the same computer, with the computer controlling which ones are
active. On a single computer, this can be done with the Linux batch command. Again, I don’t recommend that you
do thiS_Page 180,9

7 Now you know one reason you get the eternal “beach ball” or “hourglass” on your laptop. .. or why it can freeze entirely.
8 In this discussion, when I say “physicists want more,” it’s not exclusive. Other fields of study also want more resources. However, since I mostly
hang out with physicists and not geologists or architects, I’ll only speak for the folks I know.

Batch Systems 179

https://opensource.com/article/21/8/linux-at-command
https://opensource.com/article/21/8/linux-at-command
https://www.computerhope.com/unix/uat.htm

Nevis Labs ROOT tutorial, Release 22.0.2

This is a batch system: A process by which a computer monitors its resources and only executes a given job when
there’s enough resources to run it.

This answers the question “Why batch?”: So you can schedule lots of programs at once without overloading your
computer. However, so far we’ve been limited to using a single computer. In the next section, we’ll move to the next
level: running your program on multiple computers at the same time.

Batch Farm

Let’s take a look at a model of how you can submit a job from one computer and have it run on many other computers.

Your computer

T

Batch
manager
]
v ¥ v
Batch node Batch node ‘ Batch node ‘
Batch node Batch node ‘ Batch node ‘
T T
! J— | I JE—
‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘ ‘ Your program ‘
B rm e e e onhold -+ e
‘ Your program ’ Your program ’ ‘ Your program ’ Your program ’ ‘ Your program ’

Figure 12.23:: An example of a batch system managing multiple instances of a program on multiple computers.

You can probably guess how things flow from top to bottom in the above figure: You submit a program from your
computer; we’ll get into how that happens later. The computer that receives the submission is the “batch manager”.
The batch manager looks over its collection of “batch nodes”, that is, a group of computers that do nothing else but run
users’ program remotely.

The batch manager keeps track of which copy of your program has been submitted to which node. It also controls
which copy is actually running on a given node. Other copies of your program are “on hold”, waiting until a queue on
that batch node is free for your program to start running.

Of course, your programs are being interleaved with the programs submitted by all the other users of this “batch farm.”

9 Why don’t I recommend that you do this? Most computers used in the sciences are shared. You can submit several dozen jobs using batch,
but what happens when another user on that computer does the same thing? Generally, one of two things: The computer slows down, which means
it annoys everyone else in the working group; you become aware of all those other users (whose work, of course, is less important than yours by
definition) whose programs are blocking yours from executing.

Even if you manage to get a working development and execution environment on your own laptop, you’ll find that using batch will tend to slow
your computer down.
A solution, as we’ll see, is to distribute all these programs from multiple users onto other computers that no one uses interactively.

180 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

“Hey, if I have to run my program just five times, what’s the point of all this fuss?”” Don’t forget the “more” principle:
I’ve seen researchers submit 20,000 instances of their program to be executed on a batch farm. You may not need a
batch system now, but if you continue your scientific research, you almost certainly will in the future.

\WE NEED TO MAKE 500 HOLES IN THAT LJALL,
50 TVE BUILT THIS AUTOMATIC DRILL. IT USES
ELEGANT PRECISION GEARS To CONTINUALLY
ADJUST ITS TORAUE AND SPEED AS NEEDED.

GREAT, IT'S THE. PERFELT WJEIGHT!
WELL LOAD 300 OF THEM INTO
THE CANNON LJE MADE AND
SHOOT THEM AT THE WALL.

[

HOU SOFTWARE DEVELOPMENT WORKS

Figure 12.24:: https://xkcd.com/2021/ by Randall Munroe

Condor

Now that you have some idea of what a Barch Farm is, let’s consider a particular batch farm.

HTCondor is a suite of batch-related software tools. It’s maintained by the Computer Science Department of the
University of Wisconsin-Madison. It’s probably the most popular batch software in use by scientific institutions.'>”

Here’s how the abstract “batch farm” in Figure 12.23 looks in condor.

11 base this statement on the fact that I know of no other large-scale batch software manager used by any of the particle-physics institutions
associated with Nevis.
The probable reason for this is that HTCondor is free. You can’t beat that price!
2 You may have noticed that the title of this section is Condor, but the name of the software suite is HT'Condor. The maintainers of HTCondor
had to change the name from Condor a few years ago due to legal conflicts.
This is the sort of thing that can happen in the legal world when you name your software after a species of vulture.
Since the name of all the HTCondor-related commands begin with the string condor_, I'm probably going to lapse into calling the suite condor.
Please forgive the inaccuracy.

Batch Systems 181

https://xkcd.com/2021/
https://research.cs.wisc.edu/htcondor/
https://www.cs.wisc.edu/
https://www.wisc.edu/

Nevis Labs ROOT tutorial, Release 22.0.2

Submit
machine

v

Condor master

] g v
Batch node Batch node Batch node
Condor pool
Batch node Batch node Batch node
T ; T
[I I |
Your program Your program Your program Your program Your program
< I IR e s Ea e mEms s ST s | ho"d M m s s s EaEEEEE=e=aEEEEE T T >
Your program Your program Your program Your program Your program

Figure 12.25:: This figure defines a couple of terms: the “condor master” is the central computer that manages all the
others; the “condor pool” are the groups of computers dedicated to running the jobs scheduled by the condor master.

The uniform color and shapes of the “Batch nodes” in the above figure may give you the impression that all the nodes
have to be identical: the same amount of memory, disk space, CPU, etc. However, one of the nice features of condor is
that it can manage a heterogenous collection of nodes. Consider the following:

182 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

Submit
machine

Condor master

¥ g v
Batch node Batch node Batch node
Condor pool
Batch node Batch node Batch node
i ; i
I N N |
Your program Your program Your program Your program Your program
T T ~e----~onhold - e e >
Your program Your program Your program Your program Your program

Figure 12.26:: In this figure, the different colors of the batch nodes represent different computer configurations. Those
configurations might represent different amounts of memory or disk storage; they can also represent different CPU or
GPU architectures; they can even represent different operating systems. (Yes: UNIX, Windows, and Mac OS can all
exist on a single condor farm!)

This means that when you submit a job to condor (I'll descritbe how do this soon, I promise!) there needs to be
some mechanism by which condor can match what you need to run your program with what a batch node offers. This
mechanism is called ClassAds.

. Batch Systems 183

https://htcondor.readthedocs.io/en/latest/classads/classad-mechanism.html

Nevis Labs ROOT tutorial, Release 22.0.2

Submit Your requirements
ma chine (job ClassAd)
T
’
y "
€’
Condor master
€ ———
--“‘
-
v] v ""h.‘
Batch node Batch node Batch node e e
Condor pool
Batch node Batch node Batch node
| ! I | | ! |
Your program Your program Your program Your program Your program
< I IR e s Ea e mEms sonho’d...... T T >
'd R 'd Y 'd Y ' Y ' R
Your program Your program Your program Your program Your program

b r h A b A L A L A

Figure 12.27:: Here’s the ClassAd mechanism in action. Your program (“job”) has some set of ClassAds, even if you
don’t specify any explicitly. Each batch node has its own set of ClassAds, such as the amount of memory it offers per
job. Condor matches the job to run on an appropriate computer.

In the next section we’ll go over how to actually use HTCondor.

184 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

A\ ERROR

IF YOU'RE SEEING THIS, THE CODE 15 IN WHAT
T THOUGHT WAS AN UNREACHABLE STATE.

I COULD GIVE YOU ADVICE FOR WHAT TO DO.
BUT HONESTLY, WHY SHOULD YOU TRUST ME?
T CLEARLY SCREWED THIS VR I WRITING A
MESSAGE THAT SHOULD NEVER APPEAR, YET
L KNOW IT WILL PROBABLY APPEAR SOMEDAY.

ON A DEEP LEVEL, TKNOW I'M NOT
UP TO THIS TASK. T™M S0 SORRY.

Wl

NEVER WRITE ERROR MESSAGES TIRED

Figure 12.28:: https://xkcd.com/2200/ by Randall Munroe

Using Condor

Let’s start with the main documentation:
¢ HTCondor Quick-Start Guide
¢ Full HTCondor Manual

From here, I'm going to become gradually more focused on the Nevis particle-physics procedure. It’s not because these
groups have condor systems that are different in any special way. It’s the opposite: because Nevis is a relatively small
site (its condor farms' have roughly 300 queues), we use a “vanilla” version of condor.” Sites with large farms of batch
nodes, such as Fermilab and CERN, have special “wrapper” scripts around their condor job submission.

We have to start somewhere, and it might as well be with the Nevis particle-physics environment. This is a typical
structure of a set of files you’d prepare for a condor job:

11 say “farms” because the Nevis particle-physics groups have three condor batch farms:
* ATLAS Tier3 cluster
* Neutrino cluster
* a “general” cluster
The reasons for the separate farms are mostly historical, and have to do with dull things like moving the job to the data and funding issues (“Why
is this other group’s job running on a system that our group paid for?”).
2 As you get to understand condor better, you’ll realize that this is a pun. There are several different execution environments in condor, and the
default universe is called “vanilla”.

If you clicked on the link in the above paragraph to learn about condor universes, I'll make things easy for you: Unless your group explicitly
instructs you differently for your batch system, you’ll always want to use the vanilla universe.

Batch Systems 185

https://xkcd.com/2200/
https://htcondor.readthedocs.io/en/latest/users-manual/quick-start-guide.html
https://htcondor.readthedocs.io/en/latest/
https://www.fnal.gov/
https://htcondor.readthedocs.io/en/latest/users-manual/choosing-an-htcondor-universe.html
https://htcondor.readthedocs.io/en/latest/users-manual/choosing-an-htcondor-universe.html

Nevis Labs ROOT tutorial, Release 22.0.2

At the lowest level, the program(s) you want to execute.

For example, this might be a python program or a compiled C++ binary. It would be the same kind of program
that you used to complete Exercise 11.

* Above that, you’ll probably need a “shell script,” that is, a set of UNIX commands to set up the environment in
which the programs will execute.

It may help to picture this: When you run your program interactively by using ssh to get to a remote server, you
generally have to type in some commands before you can actually run a program. The shell script contains those
commands.’

As a simple example, in this tutorial we run programs that use ROOT. On the Nevis particle-physics systems, the
command to set up ROOT is:

module load root

So our script will contain that shell command (or whatever command sets up ROOT for your site).

* At the highest level is the condor command file. This is the file that contains the commands to control what
condor does with your program as it transfers it to a batch node.

For example, it’s this file that contains the ClassAds, in the form of a requirements statement, to select the
properties of the batch node.

Yes, it’s a file within a file within a file. Once you get the hang of it, it’s less complex than it sounds, especially if you
start with an example. We’ll look at one in the next section.

I WAS FASUNATED BY LOCKS AS
A KID. T LOVED HOW THEY TURNED
INFORMATION AND PATTERNS INTO

PHYSICAL STRENGTH, WHY DOES

AND A LOCK INVITES YOU TO
TRY TO OPEN IT. ITS THE
HACKER INSTINGT. ONLY YOUR
JGNORANCE STANDS INTHE WY,

I ADMIRED HARRY HOUDINI,
How HE COULD OPEN ANY LOgK
AND FREE HIMSELF FRoM

SURE, SOME OF 1T WAS FAKERY
AND SHOWMANSHIP. BUT I STILL
WONDER HOW HE S0 (ONSISTENTLY

WAIT, 1T
PASSING
A BAD STRINGS,

MY SCRIPT
KEEP DYING?

15 PARSING

| —

Figure 12.29:: https://xked.com/234/ by Randall Munroe

Condor Tutorial

Clarification: If you are not in one of the Nevis particle-physics groups, the following instructions won’t work as-is.
However, if you're trying to come up with an initial set of a condor command file (a . cmd file), a shell script (a .sh
file)', and a program (here a .py file), then going over these instructions will still be useful on other condor-based
batch farms.

3 There is an important exception to this. When you log in to a remote server, you may be typing commands like cd to go to the directory that
contains your program. As we’ll see in Resource Planning, in condor you cannot do this, because a batch node won’t have access to any of your
directories. If your program needs any files to run, you must tell condor to transfer them to the batch node.

! For the rest of this discussion, I'm going to assume any wrapper script is written in a bash-style shell. There’s nothing wrong with having the
condor executable written in a csh-style shell, or in any other scripting or programming language.

186 Chapter 12. Appendix

https://htcondor.readthedocs.io/en/latest/users-manual/submitting-a-job.html#about-requirements-and-rank
https://xkcd.com/234/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/C_shell

Nevis Labs ROOT tutorial, Release 22.0.2

Login to your file server

For the purposes of illustration, I’'m going to assume that your file server is olga (a machine name that does not exist
for the Nevis particle-physics systems), and that your Nevis account name is $USER (a variable that’s automatically
assigned in most UNIX-related operating systems).

> ssh $USER@olga.nevis.columbia.edu

Create a directory on your file server

Disks are divided into partitions, and directories are created within partitions. All the Nevis systems have a /data
partition. Let’s go there, create our test directory, and go into the new directory:

> cd /nevis/olga/data
> mkdir $USER
> cd $USER

Copy the files used in this tutorial

> cp ~seligman/root-class/condor-example.* $PWD

For a list of files you’ve copied:

> 1s -1h

Look at the files

As noted before, typically condor jobs require at least three files: the condor command file, a shell script executed by
the command file, and a program executed by the shell script. Take a look at these files and read the comments:

> less condor-example.cmd
> less condor-example.sh
> less condor-example.py

The command file (the .cmd file) submits the shell script to be executed on some machine in the condor pool. The
shell script (the . sh file) sets up the environment for the program to execute. The program (here a .py file), when it
executes, writes an output file. That output file is copied by condor to the directory from which you originally executed
condor_submit.

If you’re not at Nevis: if you click on the following links, you should be able to see these files in your web browser. It’s
worth reviewing them for both the commands and the comments:

* condor-example.cmd
* condor-example.sh
e condor-example.py

However you're looking at the files, note that each “instance” of this job has its own Process parameter. This is one
way to differentiate between multiple instances of the same program running on different job queues; i.e., process 0
gives a different result than process 1, and process 1 is different from process 2, etc.

. Batch Systems 187

https://en.wikipedia.org/wiki/Disk_partitioning
https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.cmd
https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.sh
https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.py

Nevis Labs ROOT tutorial, Release 22.0.2

The Process number
Realistically, at most you’re just going to skim the contents of these example files. But there’s one aspect I ask you to
pay special attention to: process.

This is what makes each run of your program unique. If you didn’t make use of $ (Process) in some way, as shown in
the examples, then every run of your program would produce identical results. This will wreak havoc on your analysis.

How will $ (Process) affect your program? That’s up to you. Among the most common is to have a program read a
selected number of events from a file; e.g., if the process is 0 read the first 10,000 events, if the process is 1 read events
10,001 to 20,000, etc.

If you’re running a simulation, your program will be generating lots of random numbers. Typically you’d have the
process be part of the random-number seed.

Another common use of $ (Process) is to make it part of a file name. In this way, your program will generate a unique
output file. After all the instances of your program have run, you’ll have to combine the outputs in some way. There’s
a ROOT feature designed for this: TChain.”

Make sure the files are executable

For a file to be executed as a program, it must be executable. I've already made sure that condor-example.sh and
condor-example.py are executable programs via the following commands, but I suggest you type them in again to both
be certain and to know how to do this when you start writing your own scripts.

> chmod +x condor-example.sh
> chmod +x condor-example.py

Let’s try it

Submit your condor command file to the condor cluster:*

> condor_submit condor-example.cmd

Quickly (before the program has a chance to finish), type

> condor_q
> condor_q -run

The first command shows all the jobs you submitted on this computer. The second command shows the jobs you
submitted which are currently executing, and on which computer.

Within a minute or so, the job will complete and there’ll be no result with your account ID from condor_q. Take a
look at the contents of your directory:

2 If you clicked on that TChain link, you’ll see another important ROOT class whose documentation is sorely lacking. I suggest doing a search
within the ROOT tutorials to see some examples of TChain in use:

cd $ROOTSYS/tutorials

grep -rli tchain *
3 “After all those figures you showed us, don’t we have to know the name of the condor master or any of the nodes?” If everything works, no!
Condor handles it all for you.
If you want to see how condor handles it, you can look at the following files on your server:

> less /etc/condor/condor_config
> less /etc/condor/condor_config.local

188 Chapter 12. Appendix

https://root.cern.ch/doc/master/classTChain.html
https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.sh
https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.py

Nevis Labs ROOT tutorial, Release 22.0.2

> 1s -1rth

The files are listed in ascending order by date. Note the new files at the bottom of the list. Compare these files names
to the ones given in condor-example.sh. Can you see how condor-example-test-0.root got its name?

Multiple jobs

Edit the file condor-example.cmd and change the last line to read

queue 10

This means to submit 10 jobs.* Save the file and execute the condor_submit command again. Note how the submitted
jobs are “counted off” by periods. Type condor_q and condor_q --run to see which computers execute the jobs.
When they’re all done, look at the contents of your directory to see all the new files.

Run ROOT and look at the contents of condor-example-test-9.root. Does it contain the histogram you expect?
Look at the mean and the histogram limits.

Aborting a job

It happens all the time: You submit 10,000 jobs, and then realize that something is wrong. Fortunately, you can quickly
abort a cluster of condor jobs.

Do condor_submit again. The message that comes out looks something like this:

> condor_submit condor-example.cmd
Submitting job(s)..........
Logging submit event(s)..........
10 job(s) submitted to cluster 14.

The identifier for this particular cluster is “14” (you’ll almost certainly see a different number). If you want to cancel
all the jobs in that cluster at once, the command is:

> condor_rm 14

If you forget the cluster ID, you can always remind yourself with condor_g.

Clean up

Finished? Get rid of the files you no longer need:

> rm condor-example-test*®

Or if you really want to wipe a directory that you’re never going to use again:

> cd /nevis/olga/data
> rm -rf $USER

4 If you're going to frequently change the number of jobs you’re going to submit, there’s another way to approach this. Delete the queue line
from the . cmd file. Then include a -queue N option in condor_submit, where N is the number of jobs you want to submit. For example:

condor_submit condor-example.cmd -queue 10

Batch Systems 189

https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.sh

Nevis Labs ROOT tutorial, Release 22.0.2

A couple of tricks

Here are a couple of extra tricks you can do with python to improve this process a little bit.

 Eliminating the “middle-man”, that is, the .sh file. You can do this by placing all the environment set-up
commands in your .py file.

* A different method of getting command-line arguments into your python program.

If you’ve deleted your temporary directory in /data, create it again and cd to it. Copy over these example files:

> cp ~seligman/root-class/root-python-setup.* $PWD

Take a look at root-python-setup.cmd. It looks pretty much the same as that other condor command file, with one big
difference: instead of executing a shell script that will execute another program, this command file will execute the
python program directly.

Now look at root-python-setup.py and look at the comments. Two new things are happening in this program:

* The python program is setting up its own environment. This requires the “stupid python trick” I mention in
the comments (causing the program to run itself again). This altering of an external environment is something
python can do but C++ cannot, at least not without even more trickery than you see here.

* The python program is parsing its arguments; that is, it’s looking for options and arguments instead of just
assuming that the first argument has a particular meaning. This can be done in C++ as well. When I'm writing
code that requires only a couple of parameters, I like to use “getopt” or “argparse” methods because they help
tell a user what a program is doing. Which is clearer to you?

> condor-example.py 5 myfile-5.root

> root-python-setup.py --mean=5 --outputfile=myfile.root

Resource Planning

If you’ve made it this far, then:
1. Congratulations!
2. You now know how to submit a condor job with very simple input/output requirements.
3. Your head must be spinning with all these files: .cmd files, . sh files, .py files, etc.

There’s a reason for the nested scripts. It has to do with resource planning: Telling condor what inputs are needed to
run your program, and how to handle any outputs.

Physicists hate resource planning.' But if you’re going to use condor for any real task, you’ll have to do it.

! In this discussion, when I say “physicists hate resource planning,” it’s not exclusive. Other fields of study also hate resource planning. However,
since I mostly hang out with physicists and not physicians or morticians, I'll only speak for the folks I know.

190 Chapter 12. Appendix

https://www.nevis.columbia.edu/~seligman/root-class/files/root-python-setup.cmd
https://www.nevis.columbia.edu/~seligman/root-class/files/root-python-setup.py

Nevis Labs ROOT tutorial, Release 22.0.2

Understanding the execution environment

Let’s take a look at some lines from condor-example.cmd, with a couple of modifications for the sake of discussion:

executable = condor-example.sh
transfer_input_files = condor-example.py

input experiment.root

transfer_output_files = condor-example-$(Process).root

output = condor-example-test-$(Process).out
error = condor-example-test-$(Process).err
log = condor-example-test-$(Process).log

The purpose of these lines is to instruct condor which files have to be transferred to the batch node for your program to
work, and which files should be copied back to you after your program is finished.”

This diagram illustrates what’s going on:

initial dir = <directory>
(where to look for input files)
(where output files will be sent)

input = <input file> output = <file>.out

(an input file) Execution environment ~» error = <file>.err
Some anonymous directory log = <file>.log

—

on some batch node

““““““ somewhere

(any other files needed) I

er output files = <filel>,..

executable = <my_program>
(your program)

Figure 12.30:: The relationship between the lines in a . cmd file and the condor execution environment.

Note that output refers to the direct text output of your job (such as print statements in python or cout statements
in C++). The error file will contain any error messages. The log file will include some condor status messages,
including the name of the batch node on which your job executed.’

You can learn more about these statements in the HTCondor manual.

2 You might initially think that if your program produces any outputs, condor should simply transfer everything back to you. In reality, an
execution environment often contains a lot of “junk”; one classic example are conda work files. It’s generally better to explictly tell condor which
output files are relevant to you.

Why I didn’t do this in condor-example.cmd? When I first created that file, selective transfer of output files was not available in condor. And
now... well, perhaps I'll get around to it in time for the next edition of this tutorial.

3 The .1og output from condor is a bit different than the .out and .err output. If you run your job more than once with identical values for
output= and error= (in this example it would mean than you’re running the same with the same process number), the .out and . err files will be
overwritten.

However, the .1og is always appended to, not overwritten. If you see your .log file gradually become larger and larger as you re-submit your
jobs, it’s because the file is basically maintaining a “history” of every time you’ve run the job.

. Batch Systems 191

https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.cmd
https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html
https://docs.conda.io/en/latest/miniconda.html

Nevis Labs ROOT tutorial, Release 22.0.2

Stay within the execution environment

You’re not in Kansas anymore

Or to be less flippant, you’re not in your home directory anymore. When your job is executing on a batch node, your
program (and any shell script that runs it) doesn’t have access to the files and environments that you might have set up
in your home directory.

Take another look at condor-example.sh. The first few non-comment lines set up the execution environment for the
Nevis particle-physics systems.*

If you’re not at Nevis, of course, you’ll have learn what form of preamble or set-up is required for your institution’s
batch farm to replicate your environment.

In general, it’s not a good idea if your shell script (the . sh file) references any directory outside the execution environ-
ment for that particular process. The reason is that you may not know which batch nodes will run your job, or if they
have access to any external directories.

You can fiddle with directories in condor, but you’ll want to keep it within the condor environment; e.g.:

Create a new sub-directory within the condor execution environment.
mkdir myDirectory

Visit this directory.
cd myDirectory

Do something in that directory.
echo "This is a temporary file" > file.txt

Leave the directory
cd

Run something that uses that directory.
./myprogram.py --inputfile=myDirectory/file.txt

Test to see if everything works
This may sound trivial, but you’d be surprised at how often I see people skip this step: Test your condor job submission
with 2-3 jobs before submitting a huge quantity like 20,000.

The reason why I’m giving this advice is that I’ve seen what happens when someone doesn’t do it, and there’s a problem
with their job:

* When a condor job fails, it sends an error message.
* 20,000 failed jobs means 20,000 error messages.

» Sending out 20,000 error messages at once will clog our mail server, slowing it down. This does not make one
popular.

* The 20,000 error messages are sent to your email address at your home institution. Your home institution becomes
suspicious, and shuts down your email address.

e Thenevis.columbia.edu mail server is identified as a potential source of spam, since it sent out 20,000 emails
to a single address. Our mail server is added to spam block lists. Members of the Nevis faculty discover that
their emails never arrive, and without any warnings. Again, this does not make one popular.

4 Actually, on Nevis particle-physics systems, the directory /usr/nevis/adm is located outside the condor execution environment. This works
on our batch farms because of the way directories are managed here.

192 Chapter 12. Appendix

https://www.nevis.columbia.edu/~seligman/root-class/files/condor-example.sh

Nevis Labs ROOT tutorial, Release 22.0.2

All of the above have happened, though fortunately not all at once. Still, to maintain your popularity, test your scripts
first!

Find reasonable execution times for your jobs

The “sweet spot” for the length of a job is about 20-60 minutes.

* Shorter than 5 minutes, and the overhead involved in condor setting up the execution environment and copying
your files begins to take up a substantial percentage of the job’s execution time.

* Longer than that, and your job may run up against condor’s time limit for a job. That limit is assigned by a
systems administrator; for the Nevis particle-physics systems I’ve left this limit at its default of two hours.

That’s not a “hard” limit; if no other jobs are waiting to be executed, condor will let a job run over two hours.
However, as soon as any other job requests to be executed, condor will “suspend” a job that’s taking too long. A
suspended job has to start again from the beginning.’

A practical way to discover how long your job takes to run is to do some test submissions with varying values of an
appropriate parameter; e.g., the number of events read from an input file, or the number of events to generate in a
simulation.

Too many inputs
As you work with more elaborate projects, you may discover that you need a longer and longer list of files to transfer
with the transfer_input_£files option in the . cmd file.

There are two ways to deal with this. One way is to let transfer_input_£files copy an entire directory for you. For
example:

transfer_input_files=myprogram.py,my_directory

If you have to transfer a lot of input files, put them in that directory. Then you reference that directory within your
condor environment; e.g.:

./myprogram.py --inputfile=my_directory/experiment.root

It’s easy to get sloppy and forget about the contents of any such special directories. They tend to pick up “junk” that
your condor job never uses, but transfers anyway because condor can’t tell the difference.

Therefore, I like to use the tar command to create an archive file that I will unpack in my condor job.°

Here’s an example from work that I’'m doing right now (May-2022). I’ve got a program that [want to submit to condor.
I developed the program and its associated files as I worked in a directory. That directory is filled with all kinds of
temporary files, test scripts, and other junk:

> 1s work-directory

10000events.mac example.hepmc?2 grams.gdml LArHits.h root
atestfil.fit example.hepmc3 gramssky mac o
-,scripts

bin example.treeroot GramsSky Makefile test

btestfil.fit GDMLSchema gramssky .hepmc3 options.xml test.
—mac

(continues on next page)

5 At one time we had someone try to submit a week-long spline calculation on a Nevis batch farm. It never executed, because any time someone
submitted a different job to the farm, the spine job was suspended and had to start from the beginning.

6 Why don’t T use zip? Mostly it’s personal preference: although tar is a bit harder to use, it'’s more powerful than zip. Also, zip isn’t always
part of a standard Linux installation, though I make sure it’s available on all the Nevis particle-physics systems.

Batch Systems 193

https://www.geeksforgeeks.org/tar-command-linux-examples/
https://linuxize.com/post/how-to-zip-files-and-directories-in-linux/

Nevis Labs ROOT tutorial, Release 22.0.2

(continued from previous page)

cl.gif gdmlsearch grams-z20.gdml options.xml~ test.
—.root

cl.pdf gdmlsearch.cc~ hepmc3.mac outputs-pretrajectory .
—treeViewer.C

CMakeCache. txt gramsdetsim hepmc3.mac~ output. txt user.
—,properties

(CMakeFiles GramsDetSim hepmc-ntuple.root parsed.gdml view.
—mac

cmake_install.cmake gramsdetsim.root HepRApp.jar radialdistance.root .
—xinclude.zxml

crab-45.mac gramsg4 heprep.mac rd.pdf

crab.mac GramsG4 HitRestructure.root README.md
detector-outline.mac gramsg4.root LArHits.C RestructuredEdx.root

I copy the work directory:

> c¢p -arv work-directory job-directory

Then I clean up job-directory to only contain the files I’ll need to run my condor job. Here it is after I'm done.

> 1s job-directory
bin GDMLSchema gramsdetsim gramsg4 grams.gdml gramssky mac options.xml

For me, this is a “reference directory” for the jobs I'm going to submit. I can continue to fiddle with things in work-
directory, but I’1l leave job-directory pristine until there’s a reason to change it.

This directory still contains a lot of files:’

Count the number of files in job-directory
and all its sub-directories.

> find job-directory -type f | wc -1

60

So it’s easier for me to transfer all these files as a single archive. I'll create an archive of that directory:

> tar -cvf jobDir.tar ./job-directory

It’s the single jobDir. tar file that I’ll transfer and unpack in my condor job. In my . cmd file, I’1l have:

transfer_input_files=jobDir.tar

In my .sh file, I'll have:

tar -xf jobDir.tar

Then within my condor execution environment, I’1l have access to all the files in job-directory. For example:

./job-directory/gramsky --rngseed=${process}

That last option to gramssky supplies a unique random-number seed for my sky simulation... but that’s another story.

7 Mystified by the find? By the wc? And what’s the deal with that vertical bar?
Hey, I told you that you could spend a lifetime learning about UNIX!

194 Chapter 12. Appendix

https://www.geeksforgeeks.org/find-command-in-linux-with-examples/
https://www.geeksforgeeks.org/wc-command-linux-examples/
https://www.geeksforgeeks.org/piping-in-unix-or-linux/

Nevis Labs ROOT tutorial, Release 22.0.2

ROB! To DISARM THE BOMB,
. SIMPLY ENTER A VALID
YoU USE UNIX! tar COMMAND ON YOUR

FIRST TRY; NO GOOGLING,
COME QUICK! You HAVE SECONDS,

T

Figure 12.31:: https://xkcd.com/1168/ by Randall Munroe

Shared filesystems

We’re almost finished with the subject of batch systems. Hang in there. There’s a really sick xkcd cartoon at the end.

After lecturing you on keeping your execution environment clean and independent of outside directories, I have to
confess: I wasn’t telling you the whole truth.

The reality is that in many batch-node installations, there is an external filesystem of some sort that all the nodes share.
Here are a couple of reasons why that might be needed:

¢ Software libraries, such as the those maintained in environment modules and in conda.

Keeping such libraries in a shared filesystem may be the only practical way to assure that all the batch nodes have
access to the same software.'

 Large data files.

Condor is pretty good about transferring files, but there can be problems when those files get bigger than 1GB or
so. It may be easier to read those files via a shared filesystem, even though there’ll be a speed and/or bandwidth
penalty for many programs reading a large file over the network at the same time.

There’s no single standard for shared filesystems and condor. The two accelerator labs with which I’m the most familar,
CERN and Fermilab, each have their own method. You’ve already guessed that I'm going to describe what I've set
up on the Nevis particle-physics batch farms, because it’s the one you’re mostly likely to use if you’ve read my condor
pages so far.

From this point forward, everything I describe is in the context of the Nevis particle-physics Linux cluster. If you're
not in one of the Nevis particle-physics group, or you’re outside Nevis, you’ll have to ask how they handle their shared
filesystem (if any).

I An example of this at Nevis, to which I aluded in Resource Planning, is the /usr/nevis/adm directory. On all the systems in the Nevis
particle-physics Linux cluster, including the batch nodes, this is an external directory mounted from /nevis/library/usr/nevis/adm.

. Batch Systems 195

https://xkcd.com/1168/
https://modules.readthedocs.io/en/latest/
https://docs.conda.io/projects/conda/en/latest/index.html
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/LinuxCluster
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/LinuxCluster

Nevis Labs ROOT tutorial, Release 22.0.2

Nevis shared filesystem

The cluster shares its files via NFS, a standard protocol for systems to view other directories.

At this point, you may want to read the Nevis wiki page on automount. The basic summary is if a system (let’s say
olga) has a partition (perhaps share as an example), then to view that partition use the path /nevis/olga/share.’

Anyone can set up permissions to restrict others from viewing their directories. For the most part, you can view others’
directories without having accounts on the individual machines. That’s why you can view the directory ~seligman/
root-class/, which expands to /nevis/tanya/home/seligman/root-class/, even though you can’t login to my
desktop computer tanya.

Nevis filesystems and the batch farms

At this point, you may be thinking, “Hey, I don’t have to bother with all the Resource Planning stuff.®> Bill just said
everything is shared, right? So I'll just copy-and-paste the same lines I use to run my program into a .sh file and
submit that. Easy-peasy!”

Sorry, but that won’t work. The reasons why:

e It may be troublesome to figure out how to use input=, transfer-input-files=, and
transfer-output-files=. But condor’s file-transfer mechanism is much more robust than NFS. I've
seen systems running hundreds of shadow processes without slowing down the system from which the jobs’
files came.

» The NFS file-sharing scheme has been deliberately set up in such a way that you can’t refer to your home directory
within a condor job.

It’s reasonable to ask “Why not?”” Consider what might happen if the batch nodes could access your home directory,
and all the batch nodes on a cluster wanted to access that directory at once:

What we don’t do | node | | node | | node | | node | | node | | node | | node | | node |
node node node node node node node node
node node node node node node node node
node | | node | | node | | node | | node | | node | | node | | node |
node | | node | | node | | node | | node | | node | | node | | node |

Your server node | | node | | node | | node | | node | | node | | node | | node |
node | | node | | node | | node | | node | | node | | node | | node |
node | | node | | node | | node | | node | | node | | node | | node |
node | | node | | node | | node | | node | | node | | node | | node |
node node node node node node node node
node node node node node node node node

Figure 12.32:: This is what we don’t permit the NFS-based shared filesystem to do.

NFS is a robust protocol, but handling hundreds of access requests to the same location on a single partition is a bit
much for it. If it’s just reading, the server may slow down so much that it becomes unusuable, which irritates any users

2 This may explain for you why your Nevis home directory is /nevis/milne/files/<account>. It means your home directory is named
<account>, on partition f£iles, on machine milne, in the Nevis cluster.

3 1 thought about using the more polite word “nonsense” here. But we’re all adults, and I know you can handle the word “stuff”, which (despite
being slang) is more direct and to-the-point.

196 Chapter 12. Appendix

https://www.atera.com/blog/what-is-nfs-understanding-the-network-file-system/
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Automount
https://www.guru99.com/file-permissions.html
https://htcondor.readthedocs.io/en/latest/users-manual/managing-a-job.html

Nevis Labs ROOT tutorial, Release 22.0.2

who are logged into that server to do their work. If those hundreds of jobs are writing to that directory at the same time,

the server wi

11 crash.

The servers with users’ home directories are called login servers, because those are the servers that users primarily login
to. If a login server slows down or crashes, users can’t login. Since our mail server requires a user’s home directory be
available to process email, if a login server slows down or crashes, our email slows down or crashes.*

Each Nevis particle-physics group resolves this issue by having dedicated file servers that are distinct from their login
servers. Remember the diagram I showed you at the beginning of the first class?

Administrative
servers

hecate
VM server, library

artemis
VM server

selene

VM server

Particle-Physics Computer Systems

virtual machines
T anm

franklin
Mail

ada

web server

sullivan

mailing-list server

hypatia

NIS, LDAP

notebook

Jupyter

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/ListOfMachines

twiki

wiki server

shelley

backup server

hermes
DNS

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Linux Cluster

Linux Cluster

Workgroup/Login
servers

File servers

kolya

ATLAS

tehanu
VERITAS

houston

Neutrino

shang

Heavy-ion

milne | 10 GB limit
student files
xenia xenia2
serret ged vetch

amsterdam H westside

bleeker ‘

riverside

Workstations
batch nodes

Figure 12.33:: On the first day of class, I predicted that you’d forget this diagram. Was my prediction correct?

The file servers are the smaller boxes to the right in the above figure. Each one of those file servers has at least two

partitions:

e /shar

e

This partition is meant for read-only access by the batch farms. /share is intended for software libraries or
similar resources that a job may need in order to execute.” The size of the /share partition is typically on the
order of 150GB, and it’s shared among the users in that research group.

e /data

This partition is meant for big data files (either inputs or outputs), and any other recreatable files associated with

4 Your email may not handled at Nevis, but the faculty’s email is. If you were to submit a job that would crash the faculty’s email, you would not

be popular.

5 Like the /home partitions (and similar critical directories, such as the student accounts on milne), the /share partitions are backed up nightly.
Note that /data directories are not backed up; we have neither the bandwidth nor the spare disk storage for overnight multi-terabyte backups.

Keep that in mind as you’re deciding what to keep in /share and what to keep in /data.

. Batch Systems

197

https://twiki.nevis.columbia.edu/twiki/bin/view/Main/DiskSharing

Nevis Labs ROOT tutorial, Release 22.0.2

your jobs.® Typically /data is about a dozen or more terabytes, though that varies widely between file servers.

This is how it looks:

What we do node node node node node node node node
node node node node node node node node
| node | | node | | node | | node | | node | | node | | node | | node |
/home | node | | node | | node | | node | | node | | node | | node | | node |
- | node | | node | | node | | node | | node | | node | | node | | node |
Your server @ | node | | node | | node | | node | | node | | node | | node | | node |
| node | | node | | node | | node | | node | | node | | node | | node |
| node | | node | | node | | node | | node | | node | | node | | node |
/share
e | node | | node | | node | | node | | node | | node | | node | | node |
File server node node node node node node node node
node node node node node node node node

/data

Figure 12.34:: This is what we permit the NFS-based shared filesystem to do.

It’s still possible to crash a file server in this way. But if you do, it only affects your research group, not all the Nevis
particle-physics groups, faculty, or email. Your group may irritated with you, but that’s a different story.’

Planning a batch job

Here’s the general work flow:
* Develop a program or procedure in your home directory. Get the program to work on a small scale.

* Once you’re confident you have a working program, copy the relevant files to a /share partition. Typically you
can do this (using olga as an example file server):

> mkdir -p /nevis/olga/share/$USER
> cp -arv <my-program-directory> /nevis/olga/share/$USER
> cd /nevis/olga/share/$USER

Then clean things up in <my-program-directory> in preparation for the batch farm.

* In your .cmd file, refer to any distinct input files by their absolute path to the /share directory in which you
keep them. For example:

executable=/nevis/olga/share/$USER/myjob.sh
transfer_input_files=/nevis/olga/share/$USER/myprog.py, /nevis/olga/share/$USER/
—jobDir.tar

* Create a directory on /data for your output files; e.g.:

> mkdir -p /nevis/olga/data/$USER

e Set initialdir in the . cmd file to that directory, so that output files will go there; e.g.:

6 Here, “recreatable” means that if something were to happen to the /data partition, you could easily recreate the file by running a program
again. An example of a file that is not easy to recreate is a research paper that you write; keep that and its associated plots in your home directory!

7 If your group hassles you about crashing a file server, ask them if any of them have ever crashed a server? They’ll look embarassed, mumble
an apology, and politely offer to work with you so that it doesn’t happen again.

198 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

initialdir=/nevis/olga/data/$USER

* Do a small test run of your job to see that it all works; e.g. (in . cmd):

queue 4

Then:

> condor_submit myjob.cmd

 Examine the files in /nevis/olga/data/$USER to make sure that everything works the way you want it to. Then
go to town!

queue 1000

Bringing the job to the data

There’s one last wrinkle on the whole job-design process.

Suppose your analysis requires reading large disk files. They’re too big to let condor do the transfer, and you also don’t
want to hog the network bandwidth by reading them via NFS.

One answer is to make sure that a job that requires access to a big file runs on the machine with the partition that holds
that file. This requires:

* A list of which large file is located on which batch node. That list, in turn, must come from some earlier procedure
that created/downloaded the file onto selected nodes.

* A wrapper script around the .cmd file to insert or modify a requirements= line, to force the job to run on a
particular node.

. Batch Systems 199

Nevis Labs ROOT tutorial, Release 22.0.2

Some
wraPp:r requirements = (machine = node04.nevis.columbia.edu)
scrip 7
e) Fi
Submit ¢,"
machine
¥
Condor master
W v L 4
node01 node02 node03
bigfilel.root bigfile2.root bigfile3.root
node04 node05 node06
bigfiled.root bigfile5.root bigfileé.root

Figure 12.35:: A sketch of how one might “bring the job to the data.” In this example, our program needs to access
bigfile4.root.

To some degree this brings us all the way back to Figure 12.22: a bunch of programs with the same input file all being
forced to run on a single computer. The main difference is that the process of downloading the files and submitting the
jobs can be automated. The details of how that’s automated depend on each research group and the tools they use.

Disk space

Physicists like to live in an idealized world where there’s infinite disk space.® The reality is that there’s only so much
disk space available to you, or that is shared among your research group.

Batch jobs tend to consume large amounts of disk space. In particular, if you submit N jobs, you’re going to get at
least 3*N files written to initialdir; each job will write a .out, a .err, and a .1log file. These files, and other
miscellaneous outputs associated with different projects, can accumulate and be forgotten. They passively take up
space and are never looked at again.

At some point, please consider deleting these “scrap” files once you no longer need them. Only the most intelligent
and clever physicists remember to do this... and we have high hopes for you!

8 In this discussion, when I say “physicists like to live in an idealized world”... Oh, never mind. By this point I'm sure you’ve got the joke.

200 Chapter 12. Appendix

Nevis Labs ROOT tutorial, Release 22.0.2

WHERE AM 2 ||
Q FL/0OOOOOSH ;

T pa S
WORKING IN FRICTIONLESS

WHAT HELF!
HHH"ENEDT b SCMEDNE i
ML e
& ™ 4 ol
UF{ULHE F&'FTER ALL.

o i"ﬁ”ﬁ j}‘% &

Figure 12.36:: https://xkcd.com/669/ by Randall Munroe. This is another example of an idealized environment that,
for practical reasons, physicists can’t use.

e

HUH. LOOKS UKE PHYSICS
PROFESSORS DONT LIKE

If you’re using the Nevis particle-physics systems, this same material is covered on the Nevis particle-physics wiki
(though without the cartoons and jokes):

¢ Condor
¢ Batch details

* Disk sharing

. Batch Systems 201

https://xkcd.com/669/
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/Condor
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/BatchDetails
https://twiki.nevis.columbia.edu/twiki/bin/view/Main/DiskSharing

Nevis Labs ROOT tutorial, Release 22.0.2

T KNOW THINGS ARE TOUGH RIGHT NOW. ONE DA T FOUND A TINY STAR
WHEN I WAS GOING THROUGH SOME. DIFFICULT | IN ARA THAT SEEMED FRIENDLY.
TIMES AS A KD, T WoULD GOOP ON THE !

RooF AND LOOK, THROUGH My TELESCoPE, || THERE WERE MILLIONS
LIKE T, BUT T DECIOED

THAT THIS ONE WAS MINE.

\WHEN THINGS GOT BAD, IT'D G FAIND THAT
STAR AND THINK, OF MY FANORITE ToLKIEN
QUOTE. ITs FROM SAMY's TME IN MORDCR.

(~ "THERE, PEEPING AMONG THE CLOUDAWJRACK. RBOVE. A DARK.
ToR. HIGH UP IN THE MOUNTAINS, SAM SAW AWHITE STAR
TWINKLE FOR A WHILE. THE BEAUTY OF IT SMGTE HIS

HEART, AS HE LODKED UP OUT(F THE FORSAKEN LAND,
AND HOPE RETURNED TO HiM. FOR LIKE A SHAFT, CLEAR
PND COLD, THE THOUGHT PIERCED HiM THAT IN THE END
THE SHADGW WAS ONLY A SMALL AND PASSNG THING: THERE
WAS LGHT AND HIGH BEAUTY FOREVER, BEYOND ITs REACH,
—Trg RETURN of T KinG

THATS COMFORTING! THERE'S PROBABLY A LESSON THERE

TWAS RATHER UNDERQUT “NEVER, TRUST AN UNSTPBLE

IN 1987 WHEN THE LiGHT ASMPTOTIC GIANT BRANCH

; STAR. STICK WITH MAN

REACHED EARTH. THE DEERIS J
FORMS THE STINGRAY Negup. | Tl UH, KEEP

L THAT IN MIND.)
’ ‘_’ ;..- B

Figure 12.37:: https://xkcd.com/847/ by Randall Munroe

202 Chapter 12. Appendix

https://xkcd.com/847/

CHAPTER
THIRTEEN

VERSION HISTORY

2022

People have reported to me that this tutorial is being more widely used outside of Nevis. Considering all the resources
that CERN and other institutions have put into their own ROOT tutorials, this is quite a compliment! In recognition of
this, I’ve tried to make the ROOT setup information and installation information less Nevis-centric.

I’ve added some material about directories in the “Introduction to Linux” section. This is in response to my (perhaps
false or biased) impression that an increasing number of students have no background in using the command line on
their laptops; they’re accustomed to their GUIs and saving all their files on the desktop.

On the advice of Prof. Schellman of Oregon State University, I added a few paragraphs on Poisson distributions to the
section on statistics.

The biggest change to the tutorial for 2022 was also due to an idea from Prof. Schellman: In prior years, the tutorial
was a PDF file generated from a Microsoft Word document. It is now maintained using the Sphinx documentation
management system and written in a combination of MyST and reStructuredText, both of which are variants of Mark-
down. This enables the main web-based presentation of the tutorial, with a simultaneous release of a supplementary
PDF version.

I added expansions of the three additional talks that I give during the ROOT tutorial (on statistics, speeding up code,
and batch systems). These are now available in an appendix.

2021

This year I had some extra time to teach the tutorial. I asked for suggestions from the working groups at Nevis for
additional topics. One of them was to teach the students some common concepts that physicists use in statistics. The
result was longer than I’d like, since statistics is a big topic that’s worthy of its own courses and texts. This doesn’t have
much to do with ROOT, so I created a new section on the topic.

2020

I sincerely hope that by the time you read this, the impact of the 2020 pandemic will have faded into irrelevance. There
could be no organized summer student program at Nevis that year, and certainly no in-person ROOT tutorial. However,
I decided to update the tutorial anyway.

The primary changes were to the intermediate topics:

* I moved more optional material into this section, so it would be less distracting for those going through the
tutorial page-by-page, but still be available as a reference.

¢ I offered more detailed options for installing ROOT and Jupyter on your laptop.
2019

Included a new “intermediate topics” section, to act as a reference for useful material that the students may not imme-
diately need for summer research.

2017

203

https://www.sphinx-doc.org/
https://www.sphinx-doc.org/
https://myst-parser.readthedocs.io/en/latest/sphinx/intro.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/

Nevis Labs ROOT tutorial, Release 22.0.2

We now have a Jupyterhub-based notebook installation available to Nevis students. I've incorporated this into the
lessons. It’s now a six-part course, but the part introducing notebooks is quite short.

2016
I’ve edited the Python portion to use IPython instead of the “vanilla” Python console.

The ROOT web site has changed, and its class documentation is now even worse than it was before. (Yay!) I’ve done
my best to revise this course for those changes.

2015
Many changes in response to feedback from the working groups:
» Upgrade to ROOT 6, which affected the exercises and examples for Part Four and Five.
» The TreeViewer is back in the course.
* A few more “this is what it should look like” figures added (along with more xkcd cartoons).
* Most of the working groups now have their students use Python for their summer work.

* The C++ portion on creating a code skeleton for reading an n-tuple now uses the newer MakeSelector method
instead of the older MakeClass method.

2014

At the request of some of the experimental groups, I added a parallel track in pyroot, the Python wrapper around ROOT.
The student can choose to learn ROOT/C++, pyroot, or both. This increased the size of the tutorial to five parts, but up
to three of these parts are optional.

2010

In response to student feedback, what had been one full day of work was split into two half-day classes. Instead
of eliminating the advanced exercises, I divided the two days of the 2009 class into four parts, each part roughly
corresponding to a half-day’s work. This allows each student to set their own pace and gives experienced programmers
a challenge if they need it.

2009

I was asked to expand the class to two full days. In past years, many students weren’t able to complete all the exercises
that were intended to be done in a single day. I added a set of advanced exercises for students who knew enough C++ to
get through the original material quickly, but allowed for the rest of the students to do in two days what earlier classes
had been asked to do in one.

204 Chapter 13. Version History

Nevis Labs ROOT tutorial, Release 22.0.2

DEAR VARIOUS PARENTS GRANDPARENTS, CO-WORKERS,
AND OTHER “NOT COMPUTER, PEOPLE.

WE DON'T MAGICALLY KNOW HOW T0 DO EVERYTHING IN EVERY
PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

FIND A
MENU ITEM OR
BUTTON WHICH LOOKS - THEM ALL.
RE\ATED TO WHAT ‘
YoU WANT TO

I

GOOGLE THE NAME
OF THE PROGRAM
PLIS A FEW WORDS
RELATED TO WHAT YOU
WANT TO LD, FoLLoW
ANY INSTRUCTIONS.

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT NEAR YOUR SCREEN.
CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

Figure 13.1:: http://xkcd.com/627 by Randall Munroe. Your reward for reaching the end of the very last page is to
learn what I do most of the day.

205

http://xkcd.com/627

	Introduction
	Getting Started
	A guide to this tutorial
	Getting started using your laptop
	SSH and X11
	Terminals
	Installing ROOT on your laptop

	A brief introduction to Linux
	Directories in UNIX
	Other UNIX commands
	UNIX command-line tricks

	Walkthrough: Setting up ROOT (5 minutes)

	The Basics
	Walkthrough: Starting ROOT (5 minutes)
	Walkthrough: Plotting a function (15 minutes)
	Exercise 1: Detective work (10 minutes)
	Walkthrough: Working with Histograms (25 minutes)
	Walkthrough: Saving and printing your work (15 minutes)
	Walkthrough: The ROOT browser (5 minutes)
	Walkthrough: Fitting a histogram (15 minutes)
	Walkthrough: Saving your work, part 2 (15 minutes)
	Example experiment n-tuple (10 minutes)
	Using the Treeviewer
	Correlating variables: scatterplots (10 minutes)
	New variables: expressions (10 minutes)
	Restricting values: cuts (10 minutes)

	The Notebook Server
	Starting with Jupyter (5 minutes)
	Your first notebook (10 minutes)
	Magic commands (5 minutes)
	Markdown cells (5 minutes)
	The ROOT C++ kernel (5 minutes)

	Decisions
	C++ or Python?
	Command-line or notebook?
	In favor of notebooks
	Against notebooks
	Issues with the Nevis notebook server

	Diagonalizing the 2x2 decision matrix

	The C++ Path
	Differences between C++ and Python
	C++ Walkthrough: Simple analysis using the Draw command (10 minutes)
	Pointers: A too-short explanation (for those who don’t know C++ or C) (5 minutes)
	C++ Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes)
	Walkthrough: Using C++ to analyze a Tree (10 minutes)
	C++ Walkthrough: Running the Analyze macro (10 minutes)
	C++ Walkthrough: Making a histogram with Analyze (15 minutes)
	C++ Exercise 2: Adding error bars to a histogram (5 minutes)
	Exercise 3: Two histograms in the same loop (15 minutes)
	Exercise 4: Displaying fit parameters (10 minutes)
	Exercise 5: Scatterplot (10 minutes)
	Walkthrough: Calculating our own variables (10 minutes)
	Exercise 6: Plotting a derived variable (10 minutes)
	Exercise 7: Trig functions (15 minutes)
	C++ Walkthrough: Applying a cut (10 minutes)
	Exercise 8: Picking a physics cut (15 minutes)
	Exercise 9: A bit more physics (15 minutes)
	Exercise 10: Writing histograms to a file (10 minutes)
	Exercise 11: Stand-alone program (optional) (60 minutes or more if you don’t know C++)

	The Python Path
	A brief review (5 minutes)
	Python Walkthrough: Simple analysis using the Draw command (10 minutes)
	Python Walkthrough: Simple analysis using the Draw command, part 2 (10 minutes)
	Walkthrough: Using Python to analyze a Tree (10 minutes)
	Walkthrough: Using the Python Analyze script (10 minutes)
	Python Exercise 2: Adding error bars to a histogram (5 minutes)
	Python Exercise 3: Two histograms in the same loop (15 minutes)
	Python Exercise 4: Displaying fit parameters (10 minutes)
	Python Exercise 5: Scatterplot (10 minutes)
	Python Walkthrough: Calculating our own variables (10 minutes)
	Python Exercise 6: Plotting a derived variable (10 minutes)
	Python Exercise 7: Trig functions (15 minutes)
	Python Walkthrough: Applying a cut (10 minutes)
	Python Exercise 8: Picking a physics cut (15 minutes)
	Python Exercise 9: A bit more physics (15 minutes)
	Python Exercise 10: Writing histograms to a file (10 minutes)
	Python Exercise 11: Stand-alone program (optional) (30 minutes)

	Intermediate Topics
	References
	Advanced histogramming notes
	Mean and StdDev, with weights
	Alternate gaussian parameterization
	Automatic histogram binning
	Histogram arithmetic

	Directories in ROOT
	JupyterLab
	Dataframes
	More to explore
	uproot
	coffea

	Installing ROOT on your own computer
	Anaconda
	Other packaged distributions
	Docker
	Changing the port
	Changing the directory
	Changing the container
	Docker container notes

	Singularity
	The hard way: compiling ROOT and Jupyter from scratch

	Advanced Exercises
	Working with folders inside ROOT files
	C++ Container classes
	Arrays
	ROOT’s containers
	C++ Standard Template Library (STL)
	Vectors

	Exercise 12: Create a basic x-y plot (1-2.5 hours)
	Exercise 13: A more realistic x-y plotting task (1-2 hours)

	Expert Exercises
	Exercise 14: A brutally realistic example of a plotting task (1-2 hours)
	Exercise 15: Data reduction (1-2 hours)

	Wrap-up
	Appendix
	A too-brief and too-long introduction to statistics
	Gaussian
	Poisson distributions
	Chi-squared
	Chi-squared per degree of freedom
	“We’re looking for a five-sigma effect”
	Systematic errors

	Programming Tips
	Bad Code
	Faster Code
	Clearer Code
	Loops
	Compiling Your Program
	Python
	Numba
	Cython

	C++

	Batch Systems
	Why batch?
	Batch Farm
	Condor
	Using Condor
	Condor Tutorial
	Login to your file server
	Create a directory on your file server
	Copy the files used in this tutorial
	Look at the files
	The Process number
	Make sure the files are executable
	Let’s try it
	Multiple jobs
	Aborting a job
	Clean up
	A couple of tricks

	Resource Planning
	Understanding the execution environment
	Stay within the execution environment
	Test to see if everything works
	Find reasonable execution times for your jobs
	Too many inputs

	Shared filesystems
	Nevis shared filesystem
	Nevis filesystems and the batch farms
	Planning a batch job
	Bringing the job to the data
	Disk space

	Version History

