Some quick tips to speed up your analysis

e Optimizing code
e \/ectorization
e RDataFrame

What’s wrong with this?

Hint: there are two speed issues, and two style issues

Compute the vector product of the two velocities
1 =10
while j < 1i+1:

k =i + 3

s[J] += k*]

j +=1

Better

Add a displacement to the distance array
interval = 10
limit = userNumber + 1
scale = interval + 3
while j < limit:
distance[j] += scale*j
j +=1

Vectorization
This means taking loops over arrays and splitting up the operations
onto multiple processors
o C++

e Just add “-O3” to the compilation command; e.g.
g++ -03 myprog.cxxXx -0 myprog
e Python

e Python vectorization involves full or partial conversion of Python into C code; e.g.,

Cython and Numba, which are Python compilers (and are available on the Nevis
particle-physics systems).

e Numba: http://numba.pydata.org/
e Cython: https://cython.org/

e With numpy, there may be a simpler way...

http://numba.pydata.org/
https://cython.org/

Speeding up numpy
When you’re using a Python loop with numpy arrays, try to find a
numpy function that does the same thing.

import math, numpy as np

Create a couple of 1000x1000 2D arrays filled with 1's

data = np.ones(shape=(1000,1000),dtype=np.float)
sgdata = data

This is slow:
for i in range(1000):
for j in range(1000):
data[i][]J] *= 2.0
sqdata[i][]J] = math.sqrt(data[i][]])

This is fast. We’'re using numpy’s definition of “*” and sqrt.
data *= 2.0
sgdata = np.sqrt(data)

RDataFrame

An RDataFrame lets you do column-wise operations on an ntuple or TTree,
instead of the row-wise operations you’ve done so far in the tutorial.

You can do ntuple analysis in a more “spreadsheet-like” way.
RDataFrame is a ROOT class. You can look it up in the ROOT web site (as you did with THD).

It works with both C++ and Python.

Branches -->

Row | event | ebeam pX py pz
o 0 ol 150.14] 14.33] -4.02| 143.54
5 1 1] 149.79 0.05] -1.37] 148.60
L 2 2| 150.16 4.01 3.89] 145.69
v 3 3 150.14 1.46 4.66| 146.71
4 4] 149.94] -10.34] 11.07| 148.33
5 5| 150.18] 17.08] -12.14] 143.10
6 6| 150.02 5.19 7.79] 148.59
7 7l 150.05 7.55| -7.43] 144.45
8 8| 150.07 0.23] -0.02] 147.78
9 9| 149.96 1.21 7.27] 146.99
10 10] 149.92 5.35 3.98] 140.70
11 11| 149.88] -4.63] -0.08] 147.91

