
Some quick tips to speed up your analysis

• Optimizing code
• Vectorization
• RDataFrame

What’s wrong with this?
Hint: there are two speed issues, and two style issues

Compute the vector product of the two velocities
i = 10
while j < i+1:
k = i + 3
s[j] += k*j
j += 1

Better

Add a displacement to the distance array
interval = 10
limit = userNumber + 1
scale = interval + 3
while j < limit:
distance[j] += scale*j
j += 1

Vectorization
This means taking loops over arrays and splitting up the operations
onto multiple processors
• C++

• Just add “-O3” to the compilation command; e.g.
g++ -O3 myprog.cxx -o myprog

• Python
• Python vectorization involves full or partial conversion of Python into C code; e.g.,

Cython and Numba, which are Python compilers (and are available on the Nevis
particle-physics systems).
• Numba: http://numba.pydata.org/
• Cython: https://cython.org/

• With numpy, there may be a simpler way...

http://numba.pydata.org/
https://cython.org/

Speeding up numpy

import math, numpy as np

Create a couple of 1000x1000 2D arrays filled with 1’s
data = np.ones(shape=(1000,1000),dtype=np.float)
sqdata = data

This is slow:
for i in range(1000):

for j in range(1000):
data[i][j] *= 2.0
sqdata[i][j] = math.sqrt(data[i][j])

This is fast. We’re using numpy’s definition of “*” and sqrt.
data *= 2.0
sqdata = np.sqrt(data)

When you’re using a Python loop with numpy arrays, try to find a
numpy function that does the same thing.

RDataFrame
An RDataFrame lets you do column-wise operations on an ntuple or TTree,
instead of the row-wise operations you’ve done so far in the tutorial.
You can do ntuple analysis in a more “spreadsheet-like” way.
RDataFrame is a ROOT class. You can look it up in the ROOT web site (as you did with THD).
It works with both C++ and Python.

Branches -->
<-

-E
nt

rie
s

