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Abstract

We propose to compute domain-wall propagators on the 2+1 flavor MILC staggered (asqtad)
ensembles for the mixed-action physics project: K → ππ in the ∆I = 1/2 channel.

A determination of K → ππ matrix elements is of great importance in constraining physics
beyond the Standard Model. Although the lattice calculation of K → ππ is known to be
challenging, the success of our earlier mixed-action calculation of BK indicates that this method
is also a good way to determine K → ππ matrix elements. In the upcoming allocation year, we
request resources to compute K → ππ in the ∆I = 1/2 channel at all three of the MILC lattice
spacings (a = 0.12, 0.09, 0.06 fm) on which we have already generated many of the necessary
propagators.

We therefore request the equivalent of 12.4 million Jpsi core-hours on Fermilab clusters and
12.0 million BG/P core-hours (equivalent to 6.5 million Jpsi core-hours) at Argonne and 144
Tbytes of tape storage (the equivalent of 0.39 × 106 Jpsi core-hours) at Fermilab to compute
K → ππ matrix elements.
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Scientific Objectives

Over the past few years we have carried out a successful project to calculate the kaon bag parameter
BK using USQCD resources. BK parameterizes the hadronic contribution to mixing between K0

and K0 mesons, and is one of the most sensitive probes of new physics beyond the Standard Model.
We have recently published our result [1],

B̂K = 0.724(8)(29), (1)

where the first error is statistical, and the second is the sum of all systematic errors in quadrature.
This is currently the best published unquenched determination of BK , with all systematic errors
under control, and fulfills one of the key goals in flavor physics of the U.S. lattice QCD community
stated in the 2007 white paper “Fundamental parameters from future lattice calculations” [2].
Combined with the recent determination of BK from RBC/UKQCD [3] (with whom we are in
good agreement) we confirm the earlier claim of Ref. [4] that there is some tension in the unitarity
triangle fits [5]. This tension is driven mostly by the new precision in the constraint from kaon
mixing. In particular, using the latest averages of all lattice inputs to the unitarity triangle fit, as
well as some previously neglected corrections to ǫK [6], the fit prefers the value B̂K = 0.98±0.10 [4]
when the lattice input for B̂K is excluded from the fit. Given this tension, it is crucial to continue
our precision studies of kaon physics using multiple methods including our mixed-action approach.
Under the present year’s allocation, we are continuing our work to update BK (aiming for an ≈ 3%
total error), as well as other supporting calculations such as fK/fπ, and the light quark masses.
A calculation of K → ππ in the ∆I = 3/2 channel in collaboration with MILC is also underway.
For this allocation year, we are requesting resources to continue our program with calculations of
K → ππ decays in the ∆I = 1/2 channel, allowing us to address the ∆I = 1/2 rule and ε′

K
/εK .

Matrix elements of K → ππ in both the ∆I = 1/2 and 3/2 channels are needed in order to
use the experimental determination of ε′

K
/εK to constrain new physics, and their calculation was

identified as an important future direction in the USQCD Collaboration’s 2007 white paper. The
∆I = 1/2 channel is particularly challenging for the lattice, given the contribution of disconnected
diagrams and power divergences arising from mixing with lower-dimensional operators. Nonethe-
less, given the successful calculation of BK , the time to begin seriously attacking this problem is
now. It has been demonstrated by RBC that the power divergences can be controlled using domain-
wall fermions in both the quenched [7] and 2+1 flavor [8] cases. The disconnected diagrams can only
be controlled by high statistics, making the long runs on some of the MILC asqtad ensembles par-
ticularly attractive to us. Though the purely domain-wall method will also be applied to K → ππ
matrix elements, more than one independent calculation of the same quantity will be needed in
order to confirm results and lend credibility within the broader physics community. For example,
the good consistency between the precise determinations of BK by us and by RBC/UKQCD is one
success story of the USQCD program.

Our mixed action approach combines staggered and domain-wall fermions in the method pio-
neered by the LHP Collaboration in their mixed-action work [9], and takes advantage of the best
properties of both discretizations. This method uses domain-wall valence quarks on top of an im-
proved staggered sea (the MILC configurations [10]). By using staggered sea quarks we can take
advantage of the vast library of MILC asqtad ensembles. The use of domain-wall valence quarks
allows us to minimize operator mixing and makes it much easier to implement nonperturbative
renormalization. In the case of a purely staggered calculation, taste-breaking effects due to the
finite lattice spacing introduce significant mixings between the desired four-fermion operators and
a number of other operators with incorrect tastes [11]. This makes nonperturbative techniques
difficult to apply with staggered valence quarks, both in the case of BK , as well as in the case of
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the ∆S = 1 operators needed for K → ππ decays. Domain-wall quarks, on the other hand, have
better chiral properties than staggered fermions, leading to qualitatively simpler lattice discretiza-
tion errors. Although they do not possess an exact chiral symmetry on the lattice, the degree
to which chiral symmetry is broken can be controlled through the length of the fifth dimension.
Consequently, the mixing with wrong chirality operators can be reduced to a negligible level for
most quantities and to a manageable level for those involving power divergent mixing with lower
dimensional operators, as is the case for matrix elements of ∆I = 1/2 operators.

Our studies of fK , BK , and the isovector scalar in mixed-action χPT suggest that SU(3) χPT is
a valid framework at the 10-20% level for the quantities we are considering, even up to the heavier
masses and splittings used in our simulations, including masses close to the physical strange quark.
This nontrivial agreement was demonstrated in Ref. [12] for the isovector scalar, and our studies of
light pseudoscalar decay constants and BK corroborate this [1, 13]. Although higher-order analytic
terms are necessary to obtain reasonable confidence levels in our quantities where the raw data has
sub-percent statistical errors, the contributions through next-to-leading order in SU(3) χPT are
accurate at the 10-20% level even at the physical strange quark mass. Note that these conclusions
are consistent with those of MILC [14, 15].

The indirect approach to obtaining K → ππ matrix elements at the ≈ 30% level by constructing
them from the low energy constants (LEC’s) of χPT thus appears promising. Even this level of
precision is interesting to phenomenology, and would allow us to use the experimental value of
ε′
K

/εK as a constraint on the unitarity triangle for the first time. It was shown that all of the LEC’s
needed to construct K → ππ matrix elements through next-to-leading order (NLO) in χPT can be
obtained from relatively simple quantities in Refs. [16, 17]. These simpler quantities are K → 0,
K → π, and K → ππ matrix elements at unphysical kinematics that evade the Maiani-Testa no-
go-theorem [18] for multi-hadron processes in Euclidean space. A calculation of the LEC’s through
NLO in χPT is complementary to a direct calculation of K → ππ matrix elements using the direct
finite-volume method of Lellouch-Lüscher [19]. Additional propagators beyond this year’s request
would be needed for a calculation of K → ππ via the direct method, and the propagators that we
propose to generate in this request could be recycled and used in such a future work. Because of
the numerical demands of the ∆I = 1/2 channel, and because we cannot expect to be awarded
most of the available USQCD resources in a single year, we have chosen the indirect method relying
on χPT as a first step. Fortunately, the indirect approach is a natural stepping-stone to the more
expensive direct approach. During subsequent years we can recycle the propagators from all of the
previous years, while at the same time maximizing the physics impact at the end of each stage.

The disconnected diagram appearing in Figure 2(f) presents a special numerical challenge, and
must be evaluated at unphysical kinematics even in the indirect method where the NLO LEC’s
are extracted and then used to construct K → ππ through NLO in χPT. Nonetheless, there is
some advantage to the indirect method, because the pions are strictly at rest (without noisy three-
momentum insertion), and a set of double ratios can be constructed to minimize statistical errors
and extract the needed LEC’s. Even so, it is possible that we will need a future dedicated run at
high statistics for a restricted set of parameters to address the disconnected diagram. Such a run
may be part of a future proposal.

Because we have saved all of the domain-wall propagators that we have generated since the
inception of the mixed-action program, we can re-use them in the computation of K → ππ in the
∆I = 1/2 channel. This leads to significant savings for this request compared to starting from
scratch. In order to compute the ∆I = 1/2 matrix elements, we still need to compute so-called
“eye” diagrams, where a quark propagator is contracted with itself at a point. This requires the use
of random sources, and involves an additional propagator inversion per configuration. Our request
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Figure 1: Three-point and four-point lattice correlation functions for K → ππ in the ∆I = 3/2
channel.

to USQCD is for time to compute these random source propagators on all of the lattices we have
analyzed so far. Note that we do not have computing resources elsewhere.

Simulation Method and Code

We are using the same parameters for our domain-wall propagators on the MILC lattices [9] as
those used by the LHP Collaboration in their mixed-action work. This has allowed us to perform
cross-checks of simple quantities such as mres and mπ. In particular, we first perform hypercubic-
block (HYP) smearing on the MILC lattices with the standard smearing parameters in order to
reduce proximity with the Aoki phase [20]. We also use a domain-wall height of 1.7 and an extent
in the extra dimension of Ls = 16, which produces an acceptably small residual quark mass, of the
size of the physical light quark mass on the coarse MILC ensembles. On the fine MILC lattices we
find a value of mres that is a factor of 3 times smaller in physical units. We Coulomb gauge-fix the
lattices (after HYP-smearing) and use wall sources for the quark propagators.

Figure 1 shows the contractions needed to extract the LEC’s of χPT in order to construct
K → ππ in the ∆I = 3/2 channel through NLO. Figure 2 shows the additional diagrams needed
to construct K → ππ in the ∆I = 1/2 channel through NLO. For the purpose of extracting LEC’s,
it is sufficient to have the pions at rest. We fix the time sources and sinks of the initial and
final meson states and vary the location of the ∆S = 1 operator over all timeslices in between.
We first generate both periodic and antiperiodic boundary condition quark propagators and then
take symmetric and antisymmetric linear combinations to produce forward- and backward-moving
propagators, respectively. We then tie together the forward-moving quarks and backward moving
quarks with the four-quark operator in order to effectively double the time extent of the lattice.
This allows us to go to lighter valence quark masses by reducing effects due to the finite extent
of our lattices in the time direction. For K → ππ in the ∆I = 1/2 channel, we also need a self-
contracted propagator to evaluate the “eye” diagrams of Figure 2. Because all propagators can be
reused and combined to form various degenerate and nondegenerate “kaons,” we need two Coulomb
gauge-fixed wall source propagators — one periodic and one antiperiodic — and one self-contracted
“eye” propagator, per valence quark mass per configuration. Since we already have the wall source
propagators, we have only to compute the “eye” propagator on all configurations that we have
analyzed in previous years. The self-contracted propagator is inverted on a random color source
spanning multiple timeslices. The K → ππ calculations will also share the Landau gauge-fixed
propagators computed in previous years that are needed for the nonperturbative renormalization
(NPR) of the lattice operators.

The most computationally intensive portion of this project by far is the propagator inversions,
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Figure 2: Additional lattice correlation functions for K → ππ in the ∆I = 1/2 channel using the
indirect method.
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for which we are using the optimized domain-wall inverter in the Chroma lattice QCD software
package [21]. We have developed our own codes, written using the Chroma and QDP++ libraries,
to symmetrize and antisymmetrize the quark propagators, to calculate the required three and four-
point correlation functions not involving “eye” diagrams, and to Fourier transform the Landau
gauge-fixed propagators for the NPR. All of these codes have been checked against those in the
Columbia Physics System [22]. We will write and test Chroma code to calculate the K → π and
K → ππ contractions involving an “eye” diagram over the course of the next allocation cycle. We
plan to continue to store propagators on tape at Fermilab for use in future projects.

Run Plan and Resource Allocation

We have been generating domain-wall propagators on MILC lattices for the last few years using
USQCD resources. We have calculated wall-source propagators on approximately one- to two-
hundred configurations on six a ≈ 0.125 fm “coarse” ensembles, six a ≈ 0.09 fm “fine” ensembles
and two a ≈ 0.06 fm “superfine” ensembles. In all cases, we have used only every fourth recorded
configuration in order to minimize the correlations in the lattice data given limited resources. We
are currently finishing a run of propagator generation on the large-volume 643

× 144 a ≈ 0.06
fm MILC ensemble at the Argonne BG/P. This ensemble will be particularly useful for anchoring
chiral extrapolations and determining low energy constants, given its large physical volume and
small sea-pion mass (∼ 240 MeV for the taste-Goldstone pion, ∼ 270 MeV for the taste-singlet
pion). The impact of the superfine running can be seen in our preliminary result for the chiral
extrapolation of fπ in Figure 3, where the lightest mass point on the 643 superfine ensemble differs
by only ≈ 5% from the extrapolated value in the continuum.

In the 2010–2011 USQCD allocation year we propose to calculate self-contracted propagators
with random-sources in order to compute “eye” diagrams. This requires an extra domain-wall
inversion on top of the two Coulomb gauge-fixed wall source propagators we have already made on
each configuration listed in Table 1. We are requesting time to generate these new propagators on
all of the ensembles we have analyzed so far, with the mass values given in Table 2. The use of
three lattice spacings will make the continuum extrapolation more reliable and reduce discretization
errors in K → ππ matrix elements. The superfine lattices are particularly important, both because
they have smaller taste-symmetry breaking, leading to smaller discretization errors, and because
their very fine time resolution will be helpful in calculating disconnected diagrams.

We have timed the propagator inversions for a number of valence quark masses on the a ≈ 0.06
fm MILC lattices on the Argonne BG/P; these times are given in Table 3. We have also timed
the propagator inversions for the coarser (a ≈ 0.09 and 0.12 fm) ensembles on the kaon cluster at
Fermilab; see Table 4. Using these timings, the total computing resources required to calculate all
of the propagators listed in Table 2 is given in Table 5. Based on this estimate, our total computing
request is 12.4 million Jpsi core-hours on Fermilab clusters and 12.0 million BG/P core-hours at
Argonne. This includes time to compute all of the correlation functions for the K → ππ project.
Inversions on the largest of the a ≈ 0.06 fm lattices run most efficiently at Argonne, while inversions
on the smaller lattices run well on Fermilab clusters.

We would like to save all of the domain-wall propagators to tape at Fermilab for enough time
to allow their use in other projects and by other groups. Table 6 shows the file sizes of the domain-
wall quark propagators for the four different lattice volumes, in both GB and 6n-equivalent node
hours assuming that they are stored on tape. A comparison of Table 6 and Table 3 reveals that
calculating the domain-wall propagator is ∼ 100− 200 times more expensive than storing it. Thus
it is more efficient to save and reuse the domain-wall propagators than to recalculate them. The
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total storage space needed to save all of the propagators listed in Table 2, plus the storage currently
in use holding existing propagators is given in Table 7. Our total mass storage request is 48 TBytes
of new tape (plus ≈ 96 TBytes of existing tape) at Fermilab. In order to save our correlators and
other analysis files (both old and new), we also require a small amount of disk space: ∼ 0.126
TBytes in the “/project” area at Fermilab.

Summary

With the addition of “eye” diagrams, we will be able to compute ∆I = 1/2 matrix elements,
enabling us to probe the ∆I = 1/2 rule and ε′/ε through next-to-leading order in χPT. This
will also lay the groundwork for future direct calculations using the Lellouch-Lüscher finite-volume
method [19]. Given our experience with other light pseudoscalar meson quantities, the next-to-
leading order low energy constants of χPT will likely lead to ∼ 30% errors in ∆I = 1/2, K → ππ
matrix elements, and significantly better precision when combined with direct calculations at close
to physical kinematics. Even with 30% errors, ε′/ε would provide a new and powerful constraint on
physics beyond the Standard Model; future extensions of this project would do even better. This
would fulfill one of the future goals in flavor physics of USQCD stated in the 2002 strategic plan
and the 2007 white paper “Fundamental parameters from future lattice calculations” [2].

We could easily make good use of a substantial increase in our allocation if there was an increase
in total USQCD resources. Depending upon the overall error budget for K → ππ matrix elements
we would use additional computing resources either to increase statistics on the proposed ensembles
or to generate momentum source domain-wall propagators needed for the direct evaluation of
K → ππ matrix elements. We would therefore like to retain exclusive rights to use our domain-wall
propagators for both direct and indirect determinations of K → ππ matrix elements. We would
also like exclusive rights to calculate the long distance contributions to ∆MK .

The domain-wall propagators that we are generating can be used for the calculation of other
interesting physics quantities, and we encourage other members of the lattice QCD community to
do so. For example, the NPLQCD collaboration is using our lightest quark propagators to compute
the π-K scattering length. All of the propagators listed in Table 1 are stored at Fermilab and can
be made available immediately for non-competing analyses. Researchers who wish to use them
should contact us to arrange access.
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Table 1: Number of Coulomb gauge-fixed wall source propagators available. Both spectrum quan-
tities (mπ, fπ, etc.) and BK have been calculated with all of these propagators.

a(fm) L ml ms mdwf

val.
# configs.

≈ 0.06 64 0.0018 0.018 0.0026, 0.0108, 0.033 96
≈ 0.06 48 0.0036 0.018 0.0036, 0.0072, 0.0108, 0.033 128

≈ 0.09 40 0.0031 0.0031 0.004, 0.0124, 0.0186, 0.046 102
≈ 0.09 40 0.0031 0.031 0.004, 0.0124, 0.0186, 0.046 150
≈ 0.09 28 0.0062 0.031 0.0062, 0.0124, 0.0186, 0.046 374
≈ 0.09 28 0.0093 0.031 0.0062, 0.0124, 0.0186, 0.046 198
≈ 0.09 28 0.0124 0.031 0.0062, 0.0124, 0.0186, 0.046 198
≈ 0.09 28 0.0062 0.0186 0.0062, 0.0124, 0.0186, 0.046 160

≈ 0.125 32 0.005 0.005 0.007, 0.02, 0.03, 0.05 175
≈ 0.125 24 0.005 0.05 0.007, 0.02, 0.03, 0.05, 0.065 216
≈ 0.125 20 0.007 0.05 0.01, 0.02, 0.03, 0.04, 0.05, 0.065 268
≈ 0.125 20 0.01 0.05 0.01, 0.02, 0.03, 0.05, 0.065 220
≈ 0.125 20 0.02 0.05 0.01, 0.03, 0.05, 0.065 117
≈ 0.125 20 0.01 0.03 0.01, 0.02, 0.03, 0.05, 0.065 160

Table 2: Proposed valence and sea quark mass combinations for the calculation of “eye” propaga-
tors.

a(fm) L ml ms mdwf

val.
# configs.

≈ 0.06 64 0.0018 0.018 0.00469, 0.0108, 0.033 96
≈ 0.06 48 0.0036 0.018 0.0036, 0.0072, 0.0108, 0.033 128

≈ 0.09 40 0.0031 0.0031 0.004, 0.0124, 0.0186, 0.046 102
≈ 0.09 40 0.0031 0.031 0.004, 0.0124, 0.0186, 0.046 150
≈ 0.09 28 0.0062 0.031 0.0062, 0.0124, 0.0186, 0.046 374
≈ 0.09 28 0.0093 0.031 0.0062, 0.0124, 0.0186, 0.046 198
≈ 0.09 28 0.0124 0.031 0.0062, 0.0124, 0.0186, 0.046 198
≈ 0.09 28 0.0062 0.0186 0.0062, 0.0124, 0.0186, 0.046 160

≈ 0.125 32 0.005 0.005 0.007, 0.02, 0.03, 0.05 175
≈ 0.125 24 0.005 0.05 0.007, 0.02, 0.03, 0.05, 0.065 216
≈ 0.125 20 0.007 0.05 0.01, 0.02, 0.03, 0.04, 0.05, 0.065 268
≈ 0.125 20 0.01 0.05 0.01, 0.02, 0.03, 0.05, 0.065 220
≈ 0.125 20 0.02 0.05 0.01, 0.03, 0.05, 0.065 117
≈ 0.125 20 0.01 0.03 0.01, 0.02, 0.03, 0.05, 0.065 160
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Table 3: Time to calculate a single domain-wall propagator with L5 = 16 using Chroma on the
Argonne “intrepid” BG/P.

a(fm) L mdwf

val.
nodes (intrepid) time (hours) Jpsi core-hours

≈ 0.06 64 0.0026 4096 6.7 59476
≈ 0.06 64 0.00469 4096 2.6 38127
≈ 0.06 64 0.0108 — — 19097
≈ 0.06 64 0.033 — — 10526

≈ 0.06 48 0.0036 1024 8.08 17693
≈ 0.06 48 0.0072 1024 3.81 8344
≈ 0.06 48 0.0108 1024 2.83 6197
≈ 0.06 48 0.033 1024 1.56 3416

Table 4: Time to calculate a single domain-wall propagator with L5 = 16 using Chroma on the
Fermilab “kaon” cluster. Some timings are estimates based on old runs on the Fermilab “qcd”
cluster.

a(fm) L mdwf

val.
nodes (kaon) time (hours) Jpsi core-hours

0.09 40 0.004 160 9.44 5317
0.09 40 0.0124 160 3.97 2235
0.09 40 0.0186 160 2.99 1684
0.09 40 0.046 160 1.69 952

0.09 28 0.0062 64 4.29 966
0.09 28 0.0124 64 2.39 539
0.09 28 0.0186 64 1.69 381
0.09 28 0.046 64 1.00 225

0.125 24 0.007 16 4.99 281
0.125 24 0.02 16 2.03 114
0.125 24 0.03 16 1.47 83
0.125 24 0.05 16 0.98 55
0.125 24 0.065 16 0.81 46

0.125 20 0.01 — — 129
0.125 20 0.02 — — 82
0.125 20 0.03 — — 59
0.125 20 0.05 — — 42
0.125 20 0.065 — — 37

Table 5: Computer time needed to generate the “eye” propagators for the sea quark ensembles,
valence quark masses and numbers of configurations listed in Table 2.

643 a = 0.06 fm propagators 6.5 ×106 Jpsi core-hours
483 a = 0.06 fm propagators 4.6 ×106 Jpsi core-hours
all a = 0.09 fm propagators 4.6 ×106 Jpsi core-hours
all a = 0.12 fm propagators 0.6 ×106 Jpsi core-hours
correlation functions and analysis 2.6 ×106 Jpsi core-hours

Total 18.9 ×106 Jpsi core-hours
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Table 6: File sizes of domain-wall propagators for various spatial volumes. The equivalent cost to
store the file on tape uses the conversion 1 Tbyte tape = 2,694 Jpsi core-hours.

tape storage cost
a(fm) L size (GB) (Jpsi core-hours)

≈ 0.06 64 41 108
≈ 0.06 48 17 44

≈ 0.09 40 6.6 18
≈ 0.09 28 2.3 6

≈ 0.125 32 2.3 6
≈ 0.125 24 0.9 2
≈ 0.125 20 0.6 2

Table 7: Tape storage needed to save all of the domain-wall propagators used to compute BK .
The current storage determination reflects actual usage, while the future storage requirement is
an estimate based on the proposed new propagators in Table 2 and the file sizes in Table 6. The
equivalent cost to store the file on tape uses the conversion 1 Tbyte tape = 2,694 Jpsi core-hours.

currently in use ≈ 96 TB
additional space for new runs 48 TB

Total 144 TB
= 0.39 ×106 Jpsi core-hours

Table 8: Disk storage needed to save 2-point and 3-point correlators, logfiles, and analysis files in
the “/project” area at Fermilab. The current storage determination reflects actual usage, while the
future storage requirement is an estimate. The equivalent cost to store the file on disk uses the
conversion 1 Tbyte disk = 26,940 Jpsi core-hours.

currently in use 0.072 TB
additional space for new runs 0.054 TB

Total 0.126 TB
= 3390 Jpsi core-hours
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Figure 3: Pseudoscalar decay constant versus sum of valence and residual quark masses. The circles
are coarse data points, the squares are fine data points, and the triangles are superfine data points.
The cyan band is the full QCD curve (with statistical errors only) that results from fitting the
lattice data to the mixed-action χPT expression, supplemented by higher order polynomial terms.
The cross is the experimental value, using the latest HPQCD determination of the lattice spacing.
The correlated confidence level of this fit is 17%. Note that this plot only shows data for degenerate
pions; the fit, however, also includes nondegenerate pions below mπ ∼

< 600 MeV.
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