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Motivation

Lattice calculations of K → ππ matrix elements are important for understanding the Standard Model and in constraining physics beyond the Standard Model. For example, they are needed
to explain the origin of the ∆I = 1/2 rule and to compute the long-distance contributions to neutral kaon mixing [1]. Because the lowest-order Standard Model contributions to ε′/ε are from
1-loop electroweak penguin diagrams, K → ππ decay is sensitive to physics at very high scales. Many extensions of the Standard Model lead to new particles that enter the loops, and these
contributions to K → ππ may be sufficiently large that they can be observed once the hadronic uncertainties in the weak matrix elements are small enough.

Two general approaches to evade the Maiani-Testa no-go theorem [2] and determine K → ππ matrix elements on the lattice have been developed. The “direct” Lellouch-Lüscher
finite-volume method [3] is the most straightforward to implement, but it is computationally demanding because it requires a large (∼ 6 fm) box and physical light-quark masses. The “indirect”
method constructs K → ππ matrix elements using the low-energy constants (LEC’s) of SU(3) χPT obtained from calculating simpler lattice quantities such as K → 0 and K → π. Although
it was shown in Ref. [4] that all LEC’s through next-to-leading order can be obtained from such “simple” lattice quantities, this approach relies on the use of SU(3) χPT at the kaon mass,
where the convergence of the chiral expansion is quite slow. We present a new approach for computing K → ππ matrix elements that is lest costly than the direct method but that does not
rely on the use of SU(3) χPT to extrapolate to the physical kaon mass as in the indirect method.

Tension in the CKM unitarity triangle

Recent 2 + 1 flavor lattice calculations of BK with ∼ 4%
precision [5] have revealed a 2-3σ tension in the CKM unitar-
ity triangle [1, 6, 7] which may be due to kaon or Bd-meson
mixing. Almost all constraints on the CKM unitarity triangle,
however, come from the B-meson sector. Thus it is essential
to place other constraints on the unitarity triangle from the
kaon sector in order to test whether the amount of observed
CP -violation in the B-meson sector is the same as in the kaon
sector. Once lattice QCD calculations of K → ππ matrix el-
ements are sufficiently precise, they can be combined with the
experimental measurement of ε′K/εK to impose an additional
constraint on the apex of the CKM unitarity triangle.

Figure: Global fit of the CKM unitarity triangle [7].

Proof of concept: fπ and fK
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Figure: Demonstration of the method for fπ (left plot) and fK
(right plot). Errors on the circular points only show the statistical
errors in the numerator. Vertical error bands denote the total
(statistical plus systematic) uncertainties in fπ and fK. After the
interpolation to the unphysical kinematics point mK = mphys

K and
mπ = mphys

K /2, the size of the 1-loop χPT correction is below 10%
for fπ and below 5% for fK.

Advantages of mixed-action lattice calculations

We compute K → ππ matrix elements in unquenched lattice QCD using asqtad-improved staggered sea quarks and domain-wall
valence quarks. We use the publicly-available 2+1 flavor MILC gauge configurations [8], and simulate with several valence and
sea quark masses. Although our preliminary analysis only uses two lattice spacings, we have generated data at three lattice
spacings (a ∼ 0.06, 0.09 and 0.12 fm) and will include all of it in the publication. Our lightest taste-pseudoscalar sea-sea pion
has mπ,5 = 240 MeV while our lightest valence-valence pion has mπ = 210 MeV. On the a ∼ 0.06 fm ensembles, the heaviest
(taste-singlet) sea-sea pion is also quite light mπ,I = 270 MeV. This gives us good control over our combined chiral-continuum
extrapolation using mixed-action χPT. The approximate chiral symmetry of the valence sector (mres < 3 MeV on all three
lattice spacings) makes analysis of the mixed-action simulation data simpler than the purely staggered case. Only two additional
parameters appear at 1-loop in the mixed action χPT expressions for mPS, fPS, and BK as compared to the purely domain-wall
case [9], and they can both be obtained from spectrum calculations. Furthermore, nonperturbative renormalization using the
method of Rome-Southampton [11] can be carried out in a straightforward manner. Finally, the success of our earlier mixed-action
lattice calculation of BK [12] indicates that the mixed-action method is also a good way to determine K → ππ matrix elements.

Lattice simulation parameters

Table: Ensembles and quark masses used for the preliminary determination of Re(A2). The columns show the (i) approximate lattice spacings, (ii)
lattice volumes, (iii), nominal up/down (ml) and strange quark (mh) masses in the sea, (iv) corresponding pseudoscalar taste pion mass, (v) partially
quenched valence quark masses (mx), (vi) lightest available domain-wall pion mass, and (vii) number of configurations analyzed on each ensemble.

sea sector valence sector
a(fm)

L
a

3 × T
a aml/amh amπ,5 amx amπ Nconf.

0.06 643 × 144 0.0018/0.018 0.06678(3) 0.0026, 0.0108, 0.033 0.06376(96) 96
0.06 483 × 144 0.0036/0.018 0.09353(7) 0.0036, 0.0072, 0.0108, 0.033 0.07458(76) 129
0.12 243 × 64 0.005/0.05 0.15970(13) 0.007, 0.02, 0.03, 0.05, 0.065 0.1718(11) 218
0.12 203 × 64 0.007/0.05 0.18887(8) 0.01, 0.02, 0.03, 0.04, 0.05, 0.065 0.1968(08) 279

Preliminary determination of Re(A2)

We illustrate the new approach using the (27, 1) ∆I = 3/2
K → ππ matrix element, which, when combined with contin-
uum Wilson coefficients [10], allows us to determine Re(A2).
The figure at right shows the interpolation to the unphysical
kinematics point mK = mphys

K and mπ = mphys
K /2. We then

correct this point using leading-order SU(3) χPT:
〈π+π−|O∆I=3/2

(27,1) |K0〉LO = −4iα27(m2
K −m2

π)/fKf 2
π (1)

(α27)LO = −B0f
4
0/3 , (2)

where f0 and B0 are the pion decay constant and BK in the
chiral limits, respectively. Because the renormalization factor
for the (27, 1) ∆I = 3/2 operator is the same as BK, we can
use the result for ZBK

from Ref. [12]. We obtain
Re(A2) = 1.496(70)× 10−8, (3)

where the error is statistical only. This agrees with the exper-
imental measurement, Re(A2)exp = 1.50× 10−8GeV [15].

As shown in the table at right, we estimate that the
total uncertainty in our preliminary result is below 20%, and
this will improve further with the use of our full data set.
The χPT truncation error and error from the uncertainty in
the LEC’s will also decrease with the use of the 1-loop χPT
correction factor. We restrict our lightest valence quark mass
to maintain mπL ∼> 3.5, and estimate that our finite volume
errors are a few percent using 1-loop FVχPT. We will perform

an explicit finite-volume study, however, before publication.
Our preliminary result is renormalized using lattice perturba-
tion theory, but we will complete the nonperturbative renor-
malization on the a ∼ 0.06 fm ensembles in the future.
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Figure: Determination of Re(A2) at the unphysical kinematics point
mK = mphys

K and mπ = mphys
K /2. Circles (squares) denote a ∼ 0.12 fm

(a ∼ 0.06 fm) data. Fit lines correspond to the degenerate mass case
and should pass through the filled symbols.

New approach to K → ππ matrix elements

Li and Christ concluded in Ref. [13] that large uncertainties
in the LO and NLO SU(3) LEC’s and the slow convergence
of SU(3) χPT at the scale of the kaon mass lead to large
errors that make the extraction of K → ππ matrix elements
using the “indirect” method unreliable. Our method there-
fore addresses these drawbacks of the traditional approach
and improves upon it in several ways. In the combined chiral-
continuum extrapolation, we use the physical pseudoscalar
meson masses and decay constant. This leads to better fits
as measured by the correlated χ2/d.o.f.; nontrivial agreement
between the NLO mixed-action χPT prediction for the isovec-
tor scalar correlator and lattice simulation data lends sup-
port to this approach [14]. When the fixed-order (NLO) fit
is bad, we approximate higher order terms in the chiral ex-
pansion by polynomials. This leads to larger leading-order
terms and hence suggests better convergence than was found
in Ref. [13]. For example, the two figures at right show the
SU(3) χPT fit of BK along with the sizes of the various
contributions [12].

Despite these findings, NLO χPT corrections can still be
as much as 50% for some quantities. Therefore, to achieve
the precision needed for K → ππ we do not rely on the “in-
direct” method alone. Rather, we combine indirect and direct
methods in a cost-effective way. We bypass the Maiani-Testa
theorem by simulating with both pions at rest. We fit the
numerical data to NLO mixed-action χPT plus higher-order
analytic terms, extrapolate to the continuum, and interpolate
to the point at which mK = mphys

K and mπ = mphys
K /2. Thus

we avoid needing to rely on SU(3) χPT to extrapolate to the
physical kaon mass, where we expect higher-order corrections
to be significant. We then correct this unphysical kinematics
point using fixed-order SU(3) χPT. The low energy constants
needed for this correction can be obtained from simpler quan-
tities such as fK, K0-K̄0, and K → π. Since the kaon is
tuned to its physical value, terms involving only kaons are

correct to all orders in the SU(3) chiral expansion; we
therefore expect higher-order corrections to be small.
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Figure: Chiral and continuum extrapolation of BK [12] (upper plot)
along with convergence of the SU(3) χPT fit (lower plot). Circles
(squares) denote a ∼ 0.12 fm (a ∼ 0.09 fm) data. Only degenerate
points are shown, but the fit also includes non-degenerate data. The
cyan band is the degenerate quark mass full QCD curve
(mx = my = ml = mh) in the continuum limit. The y-intercept of
the band gives the LEC B0, the value of BK in the SU(3) chiral
limit. The right-most point on both plots corresponds to ∼ ms/2.

Conclusions

This new method for determining K → ππ matrix elements from lattice simulations is less costly than direct simulations of
K → ππ at physical kinematics. It improves, however, upon the traditional “indirect” approach of constructing the K → ππ
matrix elements using NLO SU(3) χPT, which can lead to large higher-order chiral corrections. Using the explicit example
of the ∆I = 3/2 (27, 1) operator to illustrate the method, we obtain a value for Re(A2) that agrees with experiment and has
a total uncertainty of ∼< 20%. Although our simulations use domain-wall valence quarks on the MILC asqtad-improved gauge
configurations, this method is more general and can be applied to data computed with any fermion formulation.
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Figure: Correction of Re(A2) to physical kinematics using LO χPT. Note
that the leading-order χPT correction is only 15%.

uncertainty Re(A2)
statistics 4.7%
χPT truncation error 9%
uncertainty in leading-order LECs 4%
discretization errors 4%
finite volume errors few percent%
renormalization factor 3.4%
scale and quark-mass uncertainties 3%
Wilson coefficients few percent
total less than 20%

Table: Estimated error budget for Re(A2).
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